References
- A. Aleman, A class of integral operators on spaces of analytic functions, in Topics in complex analysis and operator theory, 3-30, Univ. Malaga, Malaga, 2007.
- B. J. Carswell, B. D. MacCluer, and A. Schuster, Composition operators on the Fock space, Acta Sci. Math. (Szeged) 69 (2003), no. 3-4, 871-887.
- S. Chandrasekhar, Radiative Transfer, Oxford University Press, 1950.
- O. Constantin, A Volterra-type integration operator on Fock spaces, Proc. Amer. Math. Soc. 140 (2012), no. 12, 4247-4257. https://doi.org/10.1090/S0002-9939-2012-11541-2
- O. Constantin and J. Pelaez, Integral operators, embedding theorems and a Littlewood- Paley formula on weighted Fock spaces, J. Geom. Anal. 26 (2016), no. 2, 1109-1154. https://doi.org/10.1007/s12220-015-9585-7
- C. Corduneanu, Integral Equations and Applications, Cambridge University Press, Cambridge, 1991.
- Z. Cuckovic and R. Zhao, Weighted composition operators on the Bergman space, J. London Math. Soc. (2) 70 (2004), no. 2, 499-511. https://doi.org/10.1112/S0024610704005605
- Z. Cuckovic and R. Zhao, Weighted composition operators between different weighted Bergman spaces and different Hardy spaces, Illinois J. Math. 51 (2007), no. 2, 479-498. https://doi.org/10.1215/ijm/1258138425
- K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, Berlin, 1985.
- S. Hu, M. Khavanin, and W. Zhuang, Integral equations arising in the kinetic theory of gases, Appl. Anal. 34 (1989), no. 3-4, 261-266. https://doi.org/10.1080/00036818908839899
- S. Janson, J. Peetre, and R. Rochberg, Hankel forms and the Fock space, Rev. Mat. Iberoamericana 3 (1987), no. 1, 61-138.
- T. Mengestie, Volterra type and weighted composition operators on weighted Fock spaces, Integral Equations Operator Theory 76 (2013), no. 1, 81-94. https://doi.org/10.1007/s00020-013-2050-8
- T. Mengestie, Product of Volterra type integral and composition operators on weighted Fock spaces, J. Geom. Anal. 24 (2014), no. 2, 740-755. https://doi.org/10.1007/s12220-012-9353-x
- T. Mengestie, Carleson type measures for Fock-Sobolev spaces, Complex Anal. Oper. Theory 8 (2014), no. 6, 1225-1256. https://doi.org/10.1007/s11785-013-0321-7
- T. Mengestie and S. I. Ueki, Integral, differential and multiplication operators on weighted Fock spaces, Integral, differential and multiplication operators on weighted Fock spaces, Complex Anal. Oper. Theory. DOI: 10.1007/s11785-018-0820-7.
- D. O'Regan and M. Meehan, Existence Theory for Nonlinear Integral and Integrodiffer- ential Equations, Mathematics and its Applications, 445, Kluwer Academic Publishers, Dordrecht, 1998.
- J. Pau and J. Pelaez, Embedding theorems and integration operators on Bergman spaces with rapidly decreasing weights, J. Funct. Anal. 259 (2010), no. 10, 2727-2756. https://doi.org/10.1016/j.jfa.2010.06.019
- J. Rattya, The essential norm of a composition operator mapping into the Qs-space, J. Math. Anal. Appl. 333 (2007), no. 2, 787-797. https://doi.org/10.1016/j.jmaa.2006.11.010
- J. H. Shapiro, The essential norm of a composition operator, Ann. of Math. (2) 125 (1987), no. 2, 375-404. https://doi.org/10.2307/1971314
- A. G. Siskakis, Volterra operators on spaces of analytic functions a survey, in Proceedings of the First Advanced Course in Operator Theory and Complex Analysis, 51-68, Univ. Sevilla Secr. Publ., Seville, 2006.
- S. Stevic, Weighted composition operators between Fock-type spaces in CN, Appl. Math. Comput. 215 (2009), no. 7, 2750-2760. https://doi.org/10.1016/j.amc.2009.09.016
- S.-I. Ueki, Weighted composition operators on some function spaces of entire functions, Bull. Belg. Math. Soc. Simon Stevin 17 (2010), no. 2, 343-353. https://doi.org/10.36045/bbms/1274896210