DOI QR코드

DOI QR Code

CLASSIFICATION OF FULL EXCEPTIONAL COLLECTIONS OF LINE BUNDLES ON THREE BLOW-UPS OF ℙ3

  • Liu, Wanmin (Center for Geometry and Physics Institute for Basic Science (IBS)) ;
  • Yang, Song (Center for Applied Mathematics Tianjin University) ;
  • Yu, Xun (Center for Applied Mathematics Tianjin University)
  • Received : 2018.03.27
  • Accepted : 2018.10.12
  • Published : 2019.03.01

Abstract

A fullness conjecture of Kuznetsov says that if a smooth projective variety X admits a full exceptional collection of line bundles of length l, then any exceptional collection of line bundles of length l is full. In this paper, we show that this conjecture holds for X as the blow-up of ${\mathbb{P}}^3$ at a point, a line, or a twisted cubic curve, i.e., any exceptional collection of line bundles of length 6 on X is full. Moreover, we obtain an explicit classification of full exceptional collections of line bundles on such X.

Keywords

References

  1. V. Alexeev and D. Orlov, Derived categories of Burniat surfaces and exceptional collections, Math. Ann. 357 (2013), no. 2, 743-759. https://doi.org/10.1007/s00208-013-0917-2
  2. A. Auel and M. Bernardara, Cycles, derived categories, and rationality, in Surveys on recent developments in algebraic geometry, 199-266, Proc. Sympos. Pure Math., 95, Amer. Math. Soc., Providence, RI, 2017.
  3. A. A. Beilinson, Coherent sheaves on Pn and problems in linear algebra, Funktsional. Anal. i Prilozhen. 12 (1978), no. 3, 68-69. https://doi.org/10.1007/BF01077575
  4. Ch. Bohning, H.-C. G. von Bothmer, L. Katzarkov, and P. Sosna, Determinantal Barlow surfaces and phantom categories, J. Eur. Math. Soc. (JEMS) 17 (2015), no. 7, 1569- 1592. https://doi.org/10.4171/JEMS/539
  5. C. Bohning, H.-C. G. von Bothmer, and P. Sosna, On the derived category of the classical Godeaux surface, Adv. Math. 243 (2013), 203-231. https://doi.org/10.1016/j.aim.2013.04.017
  6. A. I. Bondal, Representations of associative algebras and coherent sheaves, Math. USSR-Izv. 34 (1990), no. 1, 23-42; translated from Izv. Akad. Nauk SSSR Ser. Mat. 53 (1989), no. 1, 25-44. https://doi.org/10.1070/IM1990v034n01ABEH000583
  7. A. I. Bondal and M. M. Kapranov, Representable functors, Serre functors, and mutations, Math. USSR-Izv. 35 (1990), no. 3, 519-541; translated from Izv. Akad. Nauk SSSR Ser. Mat. 53 (1989), no. 6, 1183-1205, 1337. https://doi.org/10.1070/IM1990v035n03ABEH000716
  8. A. Bondal and D. Orlov, Semiorthogonal decomposition for algebraic varieties, https://arxiv.org/abs/alg-geom/9506012; arXiv:9506012v1.
  9. A. Bondal and D. Orlov, Reconstruction of a variety from the derived category and groups of autoequivalences, Compositio Math. 125 (2001), no. 3, 327-344. https://doi.org/10.1023/A:1002470302976
  10. A. I. Bondal and A. E. Polishchuk, Homological properties of associative algebras: the method of helices, Russian Acad. Sci. Izv. Math. 42 (1994), no. 2, 219-260; translated from Izv. Ross. Akad. Nauk Ser. Mat. 57 (1993), no. 2, 3-50. https://doi.org/10.1070/IM1994v042n02ABEH001536
  11. M. Brown and I. Shipman, The McKay correspondence, tilting, and rationality, Michigan Math. J. 66 (2017), no. 4, 785-811. https://doi.org/10.1307/mmj/1501034511
  12. I. Cheltsov, L. Katzarkov, and V. Przyjalkowski, Birational geometry via moduli spaces, in Birational geometry, rational curves, and arithmetic, 93-132, Simons Symp, Springer, Cham, 2013.
  13. C. Diemer, L. Katzarkov, and G. Kerr, Compactifications of spaces of Landau-Ginzburg models, Izv. Math. 77 (2013), no. 3, 487-508; translated from Izv. Ross. Akad. Nauk Ser. Mat. 77 (2013), no. 3, 55-76. https://doi.org/10.1070/IM2013v077n03ABEH002645
  14. D. Eisenbud and A. Van de Ven, On the normal bundles of smooth rational space curves, Math. Ann. 256 (1981), no. 4, 453-463. https://doi.org/10.1007/BF01450541
  15. A. Elagin and V. Lunts, On full exceptional collections of line bundles on del Pezzo surfaces, Mosc. Math. J. 16 (2016), no. 4, 691-709. https://doi.org/10.17323/1609-4514-2016-16-4-691-709
  16. S. Galkin, L. Katzarkov, A. Mellit, and E. Shinder, Derived categories of Keum's fake projective planes, Adv. Math. 278 (2015), 238-253. https://doi.org/10.1016/j.aim.2015.03.001
  17. S. Galkin and E. Shinder, Exceptional collections of line bundles on the Beauville surface, Adv. Math. 244 (2013), 1033-1050. https://doi.org/10.1016/j.aim.2013.06.007
  18. S. Gorchinskiy and D. Orlov, Geometric phantom categories, Publ. Math. Inst. Hautes Etudes Sci. 117 (2013), 329-349. https://doi.org/10.1007/s10240-013-0050-5
  19. L. Hille, Exceptional sequences of line bundles on toric varieties, in Mathematisches Institut, Georg-August-Universitat Gottingen: Seminars 2003/2004, 175-190, Universit atsdrucke Gottingen, Gottingen, 2004.
  20. L. Hille and M. Perling, Exceptional sequences of invertible sheaves on rational surfaces, Compos. Math. 147 (2011), no. 4, 1230-1280. https://doi.org/10.1112/S0010437X10005208
  21. L. Hille and M. Perling, Tilting bundles on rational surfaces and quasi-hereditary algebras, Ann. Inst. Fourier (Grenoble) 64 (2014), no. 2, 625-644. https://doi.org/10.5802/aif.2860
  22. A. Hochenegger and N. O. Ilten, Exceptional sequences on rational $\mathbb{C}^*$-surfaces, Manuscripta Math. 142 (2013), no. 1-2, 1-34. https://doi.org/10.1007/s00229-012-0591-9
  23. D. Huybrechts, Fourier-Mukai Transforms in Algebraic Geometry, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, Oxford, 2006.
  24. J. Keum, A vanishing theorem on fake projective planes with enough automorphisms, Trans. Amer. Math. Soc. 369 (2017), no. 10, 7067-7083. https://doi.org/10.1090/tran/6856
  25. H. K. Kim, Y.-H. Kim, and K.-S. Lee, Quasiphantom categories on a family of surfaces isogenous to a higher product, J. Algebra 473 (2017), 591-606. https://doi.org/10.1016/j.jalgebra.2016.11.020
  26. S. A. Kuleshov and D. O. Orlov, Exceptional sheaves on del Pezzo surfaces, Russian Acad. Sci. Izv. Math. 44 (1995), no. 3, 479-513; translated from Izv. Ross. Akad. Nauk Ser. Mat. 58 (1994), no. 3, 53-87. https://doi.org/10.1070/IM1995v044n03ABEH001609
  27. A. Kuznetsov, Derived categories of Fano threefolds, Proc. Steklov Inst. Math. 264 (2009), no. 1, 110-122; translated from Tr. Mat. Inst. Steklova 264 (2009), Mnogomernaya Algebraicheskaya Geometriya, 116-128. https://doi.org/10.1134/S0081543809010143
  28. A. Kuznetsov, Hochschild homology and semiorthogonal decompositions, https://arxiv.org/ abs/0904.4330; arXiv:0904.4330v1.
  29. A. Kuznetsov, Semiorthogonal decompositions in algebraic geometry, in Proceedings of the International Congress of Mathematicians-Seoul 2014. Vol. II, 635-660, Kyung Moon Sa, Seoul, 2014.
  30. K.-S. Lee, Derived categories of surfaces isogenous to a higher product, J. Algebra 441 (2015), 180-195. https://doi.org/10.1016/j.jalgebra.2015.06.022
  31. K.-S. Lee, Exceptional sequences of maximal length on some surfaces isogenous to a higher product, J. Algebra 454 (2016), 308-333. https://doi.org/10.1016/j.jalgebra.2015.09.053
  32. K.-S. Lee and T. Shabalin, Exceptional collections on some fake quadrics, Proc. Amer. Math. Soc. 146 (2018), no. 6, 2299-2313. https://doi.org/10.1090/proc/13705
  33. D. O. Orlov, Projective bundles, monoidal transformations, and derived categories of coherent sheaves, Russian Acad. Sci. Izv. Math. 41 (1993), no. 1, 133-141; translated from Izv. Ross. Akad. Nauk Ser. Mat. 56 (1992), no. 4, 852-862. https://doi.org/10.1070/IM1993v041n01ABEH002182
  34. P. Sosna, Some remarks on phantom categories and motives, https://arxiv.org/ abs/1511.07711; arXiv: 1511.07711v2.
  35. M. Szurek and J. A. Wisniewski, Fano bundles of rank 2 on surfaces, Compositio Math. 76 (1990), no. 1-2, 295-305.
  36. C. Vial, Exceptional collections, and the Neron-Severi lattice for surfaces, Adv. Math. 305 (2017), 895-934. https://doi.org/10.1016/j.aim.2016.10.012