References
- M. Auslander, I. Reiten, and S. O. Smalo, Representation Theory of Artin Algebras, Cambridge Studies in Advanced Mathematics, 36, Cambridge University Press, Cambridge, 1995.
- R. Bedard, On commutation classes of reduced words in Weyl groups, European J. Combin. 20 (1999), no. 6, 483-505. https://doi.org/10.1006/eujc.1999.0296
- N. Bourbaki, Elements de mathematique. Fasc. XXXIV. Groupes et algebres de Lie. Chapitre IV: Groupes de Coxeter et systemes de Tits. Chapitre V: Groupes engendres par des reflexions. Chapitre VI: systemes de racines, Actualites Scientifiques et Industrielles, No. 1337, Hermann, Paris, 1968.
- J. Brundan, A. Kleshchev, and P. J. McNamara, Homological properties of finite-type Khovanov-Lauda-Rouquier algebras, Duke Math. J. 163 (2014), no. 7, 1353-1404. https://doi.org/10.1215/00127094-2681278
- J. Claxton and P. Tingley, Young tableaux, multisegments, and PBW bases, Sem. Lothar. Combin. 73 (2015), Art. B73c, 21 pp.
- P. Gabriel, Auslander-Reiten sequences and representation-finite algebras, in Represen- tation theory, I (Proc. Workshop, Carleton Univ., Ottawa, Ont., 1979), 1-71, Lecture Notes in Math., 831, Springer, Berlin, 1980.
- D. Hernandez and B. Leclerc, Quantum Grothendieck rings and derived Hall algebras, J. Reine Angew. Math. 701 (2015), 77-126.
- S.-J. Kang, M. Kashiwara, and M. Kim, Symmetric quiver Hecke algebras and R- matrices of quantum affine algebras. II, Duke Math. J. 164 (2015), no. 8, 1549-1602. https://doi.org/10.1215/00127094-3119632
- S. Kato, Poincare-Birkhoff-Witt bases and Khovanov-Lauda-Rouquier algebras, Duke Math. J. 163 (2014), no. 3, 619-663. https://doi.org/10.1215/00127094-2405388
- M. Khovanov and A. D. Lauda, A diagrammatic approach to categorification of quantum groups. I, Represent. Theory 13 (2009), 309-347. https://doi.org/10.1090/S1088-4165-09-00346-X
- G. Lusztig, Canonical bases arising from quantized enveloping algebras, J. Amer. Math. Soc. 3 (1990), no. 2, 447-498. https://doi.org/10.1090/S0894-0347-1990-1035415-6
- G. Lusztig, Quantum groups at roots of 1, Geom. Dedicata 35 (1990), no. 1-3, 89-113. https://doi.org/10.1007/BF00147341
- G. Lusztig, Canonical bases and Hall algebras, in Representation theories and algebraic geometry (Montreal, PQ, 1997), 365-399, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 514, Kluwer Acad. Publ., Dordrecht, 1998.
- P. J. McNamara, Finite dimensional representations of Khovanov-Lauda-Rouquier algebras I: Finite type, J. Reine Angew. Math. 707 (2015), 103-124.
- S. Oh, Auslander-Reiten quiver of type D and generalized quantum affine Schur-Weyl duality, J. Algebra 460 (2016), 203-252. https://doi.org/10.1016/j.jalgebra.2016.03.043
- S. Oh, Auslander-Reiten quiver of type A and generalized quantum affine Schur-Weyl duality, Trans. Amer. Math. Soc. 369 (2017), no. 3, 1895-1933. https://doi.org/10.1090/tran6704
- S. Oh, Auslander-Reiten quiver and representation theories related to KLR-type Schur-Weyl duality, Math. Z. (2018). https://doi.org/10.1007/s00209-018-2093-2.
- P. Papi, A characterization of a special ordering in a root system, Proc. Amer. Math. Soc. 120 (1994), no. 3, 661-665. https://doi.org/10.1090/S0002-9939-1994-1169886-7
- C. M. Ringel, Tame algebras, Proceedings ICRA 2, Springer LNM 831, (1980), 137-87.
- C. M. Ringel, PBW-bases of quantum groups, J. Reine Angew. Math. 470 (1996), 51-88.
- R. Rouquier, 2 Kac-Moody algebras, arXiv:0812.5023 (2008).
- R. Rouquier, Quiver Hecke algebras and 2-Lie algebras, Algebra Colloq. 19 (2012), no. 2, 359-410. https://doi.org/10.1142/S1005386712000247
- Y. Saito, PBW basis of quantized universal enveloping algebras, Publ. Res. Inst. Math. Sci. 30 (1994), no. 2, 209-232. https://doi.org/10.2977/prims/1195166130
- D. Simson and A. Skowronski, Elements of the representation theory of associative algebras. Vol. 2, London Mathematical Society Student Texts, 71, Cambridge University Press, Cambridge, 2007.
- N. J. A. Sloane, The on-line encyclopedia of integer sequences, published electronically at http://oeis.org.
- M. Varagnolo and E. Vasserot, Canonical bases and KLR-algebras, J. Reine Angew. Math. 659 (2011), 67-100.
- D. P. Zhelobenko, Extremal cocycles on Weyl groups, Funktsional. Anal. i Prilozhen. 21 (1987), no. 3, 11-21, 95. https://doi.org/10.1007/BF02577133