DOI QR코드

DOI QR Code

INTENSIVE MONITORING SURVEY OF NEARBY GALAXIES (IMSNG)

  • Im, Myungshin (Center for the Exploration of the Origin of the Universe, Department of Physics and Astronomy, Seoul National University) ;
  • Choi, Changsu (Center for the Exploration of the Origin of the Universe, Department of Physics and Astronomy, Seoul National University) ;
  • Hwang, Sungyong (Center for the Exploration of the Origin of the Universe, Department of Physics and Astronomy, Seoul National University) ;
  • Lim, Gu (Center for the Exploration of the Origin of the Universe, Department of Physics and Astronomy, Seoul National University) ;
  • Kim, Joonho (Center for the Exploration of the Origin of the Universe, Department of Physics and Astronomy, Seoul National University) ;
  • Kim, Sophia (Center for the Exploration of the Origin of the Universe, Department of Physics and Astronomy, Seoul National University) ;
  • Paek, Gregory S.H. (Center for the Exploration of the Origin of the Universe, Department of Physics and Astronomy, Seoul National University) ;
  • Lee, Sang-Yun (Center for the Exploration of the Origin of the Universe, Department of Physics and Astronomy, Seoul National University) ;
  • Yoon, Sung-Chul (Astronomy Program, Department of Physics and Astronomy, Seoul National University) ;
  • Jung, Hyunjin (Department of Physics, Pohang University of Science and Technology) ;
  • Sung, Hyun-Il (Korea Astronomy and Space Science Institute) ;
  • Jeon, Yeong-beom (Korea Astronomy and Space Science Institute) ;
  • Ehgamberdiev, Shuhrat (Ulugh Beg Astronomical Institute, Uzbek Academy of Sciences) ;
  • Burhonov, Otabek (Ulugh Beg Astronomical Institute, Uzbek Academy of Sciences) ;
  • Milzaqulov, Davron (Ulugh Beg Astronomical Institute, Uzbek Academy of Sciences) ;
  • Parmonov, Omon (Ulugh Beg Astronomical Institute, Uzbek Academy of Sciences) ;
  • Lee, Sang Gak (Astronomy Program, Department of Physics and Astronomy, Seoul National University) ;
  • Kang, Wonseok (National Youth Space Center) ;
  • Kim, Taewoo (National Youth Space Center) ;
  • Kwon, Sun-gill (National Youth Space Center) ;
  • Pak, Soojong (Center for the Exploration of the Origin of the Universe, Department of Physics and Astronomy, Seoul National University) ;
  • Ji, Tae-Geun (Center for the Exploration of the Origin of the Universe, Department of Physics and Astronomy, Seoul National University) ;
  • Lee, Hye-In (Center for the Exploration of the Origin of the Universe, Department of Physics and Astronomy, Seoul National University) ;
  • Park, Woojin (Center for the Exploration of the Origin of the Universe, Department of Physics and Astronomy, Seoul National University) ;
  • Ahn, Hojae (Department of Astronomy and Space Science, Kyung Hee University) ;
  • Byeon, Seoyeon (Department of Astronomy and Space Science, Kyung Hee University) ;
  • Han, Jimin (Department of Astronomy and Space Science, Kyung Hee University) ;
  • Gibson, Coyne (McDonald Observatory, The University of Texas at Austin) ;
  • Wheeler, J. Craig (McDonald Observatory, The University of Texas at Austin) ;
  • Kuehne, John (McDonald Observatory, The University of Texas at Austin) ;
  • Johns-Krull, Chris (Department of Physics & Astronomy, Rice University) ;
  • Marshall, Jennifer (Mitchell Institute for Fundamental Physics and Astronomy and Department of Physics and Astronomy, Texas A&M University) ;
  • Hyun, Minhee (Center for the Exploration of the Origin of the Universe, Department of Physics and Astronomy, Seoul National University) ;
  • Lee, Seong-Kook J. (Center for the Exploration of the Origin of the Universe, Department of Physics and Astronomy, Seoul National University) ;
  • Kim, Yongjung (Center for the Exploration of the Origin of the Universe, Department of Physics and Astronomy, Seoul National University) ;
  • Yoon, Yongmin (Center for the Exploration of the Origin of the Universe, Department of Physics and Astronomy, Seoul National University) ;
  • Paek, Insu (Center for the Exploration of the Origin of the Universe, Department of Physics and Astronomy, Seoul National University) ;
  • Shin, Suhyun (Center for the Exploration of the Origin of the Universe, Department of Physics and Astronomy, Seoul National University) ;
  • Taak, Yoon Chan (Center for the Exploration of the Origin of the Universe, Department of Physics and Astronomy, Seoul National University) ;
  • Kang, Juhyung (Astronomy Program, Department of Physics and Astronomy, Seoul National University) ;
  • Choi, Seoyeon (Center for the Exploration of the Origin of the Universe, Department of Physics and Astronomy, Seoul National University) ;
  • Jeong, Mankeun (Astronomy Program, Department of Physics and Astronomy, Seoul National University) ;
  • Jung, Moo-Keon (Astronomy Program, Department of Physics and Astronomy, Seoul National University) ;
  • Kim, Hwara (Department of Earth Science Education, Seoul National University) ;
  • Kim, Jisu (Department of Astronomy and Space Science, Kyung Hee University) ;
  • Lee, Dayae (Department of Astronomy, Yonsei University) ;
  • Park, Bomi (Center for the Exploration of the Origin of the Universe, Department of Physics and Astronomy, Seoul National University) ;
  • Park, Keunwoo (Department of Astronomy and Space Science, Sejong University) ;
  • O, Seong A (Astronomy Program, Department of Physics and Astronomy, Seoul National University)
  • Received : 2018.11.30
  • Accepted : 2019.01.10
  • Published : 2019.02.28

Abstract

Intensive Monitoring Survey of Nearby Galaxies (IMSNG) is a high cadence observation program monitoring nearby galaxies with high probabilities of hosting supernovae (SNe). IMSNG aims to constrain the SN explosion mechanism by inferring sizes of SN progenitor systems through the detection of the shock-heated emission that lasts less than a few days after the SN explosion. To catch the signal, IMSNG utilizes a network of 0.5-m to 1-m class telescopes around the world and monitors the images of 60 nearby galaxies at distances D < 50 Mpc to a cadence as short as a few hours. The target galaxies are bright in near-ultraviolet (NUV) with $M_{NUV}$ < -18.4 AB mag and have high probabilities of hosting SNe ($0.06SN\;yr^{-1}$ per galaxy). With this strategy, we expect to detect the early light curves of 3.4 SNe per year to a depth of R ~ 19.5 mag, enabling us to detect the shock-heated emission from a progenitor star with a radius as small as $0.1R_{\odot}$. The accumulated data will be also useful for studying faint features around the target galaxies and other science projects. So far, 18 SNe have occurred in our target fields (16 in IMSNG galaxies) over 5 years, confirming our SN rate estimate of $0.06SN\;yr^{-1}$ per galaxy.

Keywords

CMHHBA_2019_v52n1_11_f0001.tif 이미지

Figure 1. Model predictions of the shock-heated emission light curves at 50 Mpc, overlayed on the best-fit early light curve of SN 2015F (Im et al. 2015b) that is fitted to the data after ~ 1 day after the explosion and shifted to 50 Mpc (the solid black line). The best-fit early light curve of SN 2015F represents a typical SN Ia light curve due to radioactive decay. The dashed lines are for Rabinak & Waxman (2011) for a CC SN, and the dotted lines are for Kasen (2010) due to the shock-heated emission from a companion star in SN Ia. The shock-heated emission from SN Ia is expected to be anisotropic, and can be fainter by 2.5 mag. The case plotted here is for the most optimal viewing angle.

CMHHBA_2019_v52n1_11_f0002.tif 이미지

Figure 2. MNUV (AB) versus distance (Mpc) of IMSNG galaxies (red squares), plotted over galaxies from Bai et al. (2015) (gray circles). The area within the black dashed line denotes the region where we selected IMSNG galaxies.

CMHHBA_2019_v52n1_11_f0003.tif 이미지

Figure 3. The locations of the telescopes used by IMSNG. The background world map is taken from http://trip8.co.

CMHHBA_2019_v52n1_11_f0004.tif 이미지

Figure 4. The occurrence of SNe per year per galaxy (SN rate) as a function of FUV (blue) or NUV (red) magnitudes for galaxies within 50 Mpc. The rates were examined over the period of 2006-2016.

CMHHBA_2019_v52n1_11_f0005.tif 이미지

Figure 5. The emergence of SN 2017gax (SN Ib/Ic) in NGC 1672 which is caught by SNUCAM-II on LSGT (Im et al. 2015b; Choi & Im 2017), one of the IMSNG telescopes (Im et al. 2017a). Each image shows a stack of three 180 sec exposure frames in r-band, and the green circle with a ra-dius of 20:000 indicates the location of the SN. This example demonstrates that the high cadence IMSNG observation can catch the early optical light curves of SNe. The UT date of the observation is also indicated in each image.

CMHHBA_2019_v52n1_11_f0006.png 이미지

Figure 6. (Left) A single exposure (60 seconds) R-band image near NGC 895 galaxy. A part of NGC 895 is visible on the left. (Right) A stacked R-band image (2.37 hours) of the same eld. The data taken from 2013 to 2016 were used. A low SB satellite galaxy candidate is marked as a large, thick arrow. Merging features are visible in the deep image for a galaxy on the top and noted with small arrows.

Table 1 IMSNG target galaxies

CMHHBA_2019_v52n1_11_t0001.tif 이미지

Table 2 The current list of telescopes in the IMSNG network

CMHHBA_2019_v52n1_11_t0002.tif 이미지

Table 3 SNe and other transients in IMSNG galaxies (2014-2018)

CMHHBA_2019_v52n1_11_t0003.tif 이미지

References

  1. Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2017a, GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence, PRL, 119, 141101 https://doi.org/10.1103/PhysRevLett.119.141101
  2. Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2017b, Multi-Messenger Observations of a Binary Neutron Star Merger, ApJL, 848, 12 https://doi.org/10.3847/1538-4357/aa8b77
  3. Bai, Y., Liu, J., & Wang, S. 2015, An Updated Ultraviolet Catalog of GALEX Nearby Galaxies, ApJS, 220, 6 https://doi.org/10.1088/0067-0049/220/1/6
  4. Bersten, M. C., Benvenuto, O. G., Nomoto, K., et al. 2012, The Type IIb Supernova 2011dh from a Supergiant Progenitor, ApJ, 757, 31 https://doi.org/10.1088/0004-637X/757/1/31
  5. Berton, M., Congiu, E., Benetti, S., et al. 2018, ePESSTO Spectroscopic Classi cation of Optical Transients, ATel, 12216
  6. Blagorodnova, N., Kotak, R., Polshaw, J., et al. 2017, Common Envelope Ejection for a Luminous Red Nova in M101, ApJ, 834, 107 https://doi.org/10.3847/1538-4357/834/2/107
  7. Bloom, J. S., Kasen, D., Shen, K. J., et al. 2012, A Compact Degenerate Primary-Star Progenitor of SN 2011fe, ApJL, 744, L17 https://doi.org/10.1088/2041-8205/744/2/L17
  8. Botticella, M. T., Cappellaro, E., Greggio, L., et al. 2017, Supernova Rates from The SUDARE VST-Omegacam Search II. Rates in a Galaxy Sample, A&A, 598, A50 https://doi.org/10.1051/0004-6361/201629432
  9. Botticella, M. T., Smartt, S. J., Kennicutt, R. C. Jr., Cappellaro, E., Sereno, M., & Lee, J. C. 2012, A Comparison between Star Formation Rate Diagnostics and Rate of Core Collapse Supernovae within 11 Mpc, A&A, 537, A132 https://doi.org/10.1051/0004-6361/201117343
  10. Branch, D., & Wheeler, J. C. 2017, Supernova Explosions: Astronomy and Astrophysics Library (Berlin: Springer)
  11. Cao, Y., Kasliwal, M. M., Chen, G., & Arcavi, I. 2015a, iPTF Observation of PSN J14021678+5426205, ATel, 7070
  12. Cao, Y., Kulkarni, S. R., Howell, D., et al. 2015b, A Strong Ultraviolet Pulse from a Newborn Type Ia Supernova, Nature, 521, 328 https://doi.org/10.1038/nature14440
  13. Choi, C., & Im, M. 2017, Seoul National University Camera II (SNUCAM-II): The New SED Camera for the Lee Sang Gak Telescope (LSGT), JKAS, 50, 71
  14. Choi, N., Park, W.-K., Lee, H.-I., Ji, T.-G., Jeon, Y., Im, M., & Pak, S. 2015, A New Auto-Guiding System for CQUEAN, JKAS, 48, 177
  15. Choi, S., Choi, C., & Im, M. 2018, Photometry of Fifteen New Variable Sources Discovered by IMSNG, AAVSO, 46, 1
  16. Chun, S.-H., Yoon, S.-C., Jung, M.-K., Kim, D. U., & Kim, J. 2018, Evolutionary Models of Red Supergiants: Evidence for a Metallicity-Dependent Mixing Length and Implications for Type IIP Supernova Progenitors, ApJ, 853, 79 https://doi.org/10.3847/1538-4357/aa9a37
  17. Ehgamberdiev, S. 2018, Modern Astronomy at the Maidanak Observatory in Uzbekistan, Nature Astronomy, 2, 349 https://doi.org/10.1038/s41550-018-0459-3
  18. Eldridge, J. J., Fraser, M., Smartt, S. J., Maund, J. R., & Crockett, R. M. 2013, The Death of Massive Stars - II. Observational Constraints on The Progenitors of Type Ibc Supernovae, MNRAS, 436, 774 https://doi.org/10.1093/mnras/stt1612
  19. Foley, R. J., Challis, P. J., Filippenko, A. V., et al. 2012, Very Early Ultraviolet and Optical Observations of the Type Ia Supernova 2009ig, ApJ, 744, 38 https://doi.org/10.1088/0004-637X/744/1/38
  20. Fraser, M., Ergon, M., Eldridge, J. J., et al. 2011, SN 2009md: Another Faint Supernova from a Low-Mass Progenitor, MNRAS, 417, 1417 https://doi.org/10.1111/j.1365-2966.2011.19370.x
  21. Gao, Y., & Pritchet, C. 2013, Correlations between SDSS Type Ia Supernova Rates and Host Galaxy Properties, AJ, 145, 83 https://doi.org/10.1088/0004-6256/145/3/83
  22. Gil de Paz, A., Boissier, S., Madore, B. F., et al. 2007, The GALEX Ultraviolet Atlas of Nearby Galaxies, ApJS, 173, 185 https://doi.org/10.1086/516636
  23. Goobar, A., Kormer, M., Siverd, R., et al. 2015, Constraints on the Origin of the First Light from SN 2014J, ApJ, 799, 106 https://doi.org/10.1088/0004-637X/799/1/106
  24. Goranskij, V. P., Barsukova, E. A., Spiridonova, O. I., et al. 2016, Photometry and Spectroscopy of the Luminous Red Nova PSNJ14021678+5426205 in the Galaxy M101, Astrophysical Bulletin, 71, 82 https://doi.org/10.1134/S1990341316010090
  25. Graur, O., Bianco, F. B., Huang, S., et al. 2017a, LOSS Revisited. I. Unraveling Correlations between Supernova Rates and Galaxy Properties, as Measured in a Reanalysis of the Lick Observatory Supernova Search, ApJ, 837, 120 https://doi.org/10.3847/1538-4357/aa5eb8
  26. Graur, O., Bianco, F. B., Modjaz, M., et al. 2017b, LOSS Revisited. II. The Relative Rates of Different Types of Supernovae Vary between Low- and High-Mass Galaxies, ApJ, 837, 120 https://doi.org/10.3847/1538-4357/aa5eb8
  27. Hachisu, I., Kato, M., & Nomoto, K. 1996, A New Model for Progenitor Systems of Type Ia Supernovae, ApJL, 470, L97 https://doi.org/10.1086/310303
  28. Han, W., Mack, P., Lee, C.-U., et al. 2005, Development of a 1-m Robotic Telescope System, PASJ, 57, 821 https://doi.org/10.1093/pasj/57.5.821
  29. Han, Z., & Podsiadlowski, Ph. 2004, The Single-Degenerate Channel for the Progenitors of Type Ia Supernovae, MNRAS, 350, 1301 https://doi.org/10.1111/j.1365-2966.2004.07713.x
  30. Hong, J., Im, M., Kim, M., & Ho, L. C. 2015, Correlation between Galaxy Mergers and Luminous Active Galactic Nuclei, ApJ, 804, 34 https://doi.org/10.1088/0004-637X/804/1/34
  31. Hosseinzadeh, G., Sand, D. J., Velenti, S., et al. 1997, Early Blue Excess from the Type Ia Supernova 2017cbv and Implications for Its Progenitor, ApJL, 845, L11 https://doi.org/10.3847/2041-8213/aa8402
  32. Iben, I. Jr., & Tutukov, A. V. 1984, Supernovae of Type I as End Products of the Evolution of Binaries with Components of Moderate Initial Mass (M not Greater than About 9 Solar Masses), ApJS, 54, 335 https://doi.org/10.1086/190932
  33. Im, M., Choi, C., & Kim, K. 2015a, Lee Sang Gak Telescope (LSGT): A Remotely Operated Robotic Telescope for Education and Research at Seoul National University, JKAS, 48, 207
  34. Im, M., Choi, C., Lee, H. M., et al. 2017a, LIGO/Virgo G297595: LSGT Observation of Nearby Galaxies, GCN, 21885
  35. Im, M., Choi, C., Yoon, S.-C., et al. 2015b, The Very Early Light Curve of SN 2015F in NGC 2442: A Possible Detection of Shock-Heated Cooling Emission and Constraints on SN Ia Progenitor System, ApJS, 221, 22 https://doi.org/10.1088/0067-0049/221/1/22
  36. Im, M., Ko, J., Cho, Y., Choi, C., Joen, Y., Lee, I., & Ibrahimov, M. 2010, Seoul NAtional University 4K x 4K Camera (SNUCAM) for Maidanak Observatory, JKAS, 43, 75
  37. Im, M., Yoon, Y., Lee, S.-K., et al. 2017b, Distance and Properties of NGC 4993 as the Host Galaxy of the Gravitational- Wave Source GW170817, ApJL, 849, 16 https://doi.org/10.3847/1538-4357/aa8d6c
  38. Kasen, D. 2010, Seeing the Collision of a Supernova with Its Companion Star, ApJ, 708, 1025 https://doi.org/10.1088/0004-637X/708/2/1025
  39. Kasliwal, M. M. 2012, Systematically Bridging the Gap between Novae and Supernovae, PASA, 29, 482 https://doi.org/10.1071/AS11061
  40. Kim, E., Park, W.-K., Jeong, H., et al. 2011, Auto-Guiding System for CQUEAN (Camera for Quasars in Early Universe), JKAS, 44, 115
  41. Kim, J., Karouzos, M., Im, M., et al. 2018, Intra-Night Optical Variability of Active Galactic Nuclei in the Cosmos Field with the KMTNet, JKAS, 51, 89
  42. Kim, S., Jeon, Y., Lee, H.-I., et al. 2016, Development of SED Camera for Quasars in Early Universe (SQUEAN), PASP, 128, 5004
  43. Kulkarni, S., R., Ofek, E. O., Rau, A., et al. 2007, An Unusually Brilliant Transient in the Galaxy M85, Nature, 447, 458 https://doi.org/10.1038/nature05822
  44. Langer, N., Deutschmann, A., Wellstein, S., & Hoflich, P. 2000, The Evolution of Main Sequence Star + White Dwarf Binary Systems towards Type Ia Supernovae, A&A, 362, 1046
  45. Li, X.-D., & van den Heuvel, E. P. J. 1997, Evolution of White Dwarf Binaries: Supersoft X-Ray Sources and Progenitors of Type Ia Supernovae, A&A, 322, L9
  46. Lim, J., Chang, S., Pak, S., Kim, Y., Park, W.-K., & Im, M. 2013, Focal Reducer for CQUEAN (Camera for QUasars in EArly uNiverse), JKAS, 46, 161
  47. Maeda, K., & Terada, Y. 2016, Progenitors of Type Ia Supernovae, IJMP D, 25, 1630024
  48. Maoz, D., & Mannucci, F. 2012, Type-Ia Supernova Rates and the Progenitor Problem: A Review, PASA, 29, 447 https://doi.org/10.1071/AS11052
  49. Nakar, E., & Sari, R. 2010, Early Supernovae Light Curves Following the Shock Breakout, ApJ, 725, 904 https://doi.org/10.1088/0004-637X/725/1/904
  50. Noebauer, U. M., Kromer, M., Taubenberger, S., et al. 2017, Early Light Curves for Type Ia Supernova Explosion Models, MNRAS, 472, 2787 https://doi.org/10.1093/mnras/stx2093
  51. Nomoto, K. 1982, Accreting White Dwarf Models for Type I Supernovae. I - Presupernova Evolution and Triggering Mechanisms, ApJ, 253, 798 https://doi.org/10.1086/159682
  52. Nugent, P. E., Sullivan, M., Cenko, S. B., et al. 2011, Supernova SN 2011fe from an Exploding Carbon-Oxygen White Dwarf Star, Nature, 480, 344 https://doi.org/10.1038/nature10644
  53. Olling, R. P., Mushotsky, R., Shaya, E. J., et al. 2015, No Signature of Ejecta Interaction with a Stellar Companion in Three type Ia Supernovae, Nature, 521, 332 https://doi.org/10.1038/nature14455
  54. Ouchi, R., & Maeda, K. 2017, Radii and Mass-Loss Rates of Type IIb Supernova Progenitors, ApJ, 840, 90 https://doi.org/10.3847/1538-4357/aa6ea9
  55. Pakmor, R., Kromer, M., Taubenberger, S., Sim, S. A., Ropke, F. K., & Hillenbrandt, W. 2012, Normal Type Ia Supernovae from Violent Mergers of White Dwarf Binaries, ApJL, 747, L10 https://doi.org/10.1088/2041-8205/747/1/L10
  56. Park, H. S., Moon, D.-S., Zaritsky, D., et al. 2017, Dwarf Galaxy Discoveries from the KMTNet Supernova Program. I. The NGC 2784 Galaxy Group, ApJ, 848, 19 https://doi.org/10.3847/1538-4357/aa88ab
  57. Park, W.-K., Pak, S., Im, M., et al. 2012, Camera for Quasars in Early Universe (CQUEAN), PASP, 124, 839 https://doi.org/10.1086/667390
  58. Pastorello, A., Della Valle, M., Smartt, S. J., et al. 2007, A Very Faint Core-Collapse Supernova in M85, Nature, 449, 1
  59. Piro, A. L., & Morozova, V. S. 2016, Exploring the Potential Diversity of Early Type Ia Supernova Light Curves, ApJ, 826, 96 https://doi.org/10.3847/0004-637X/826/1/96
  60. Piro, A. L., & Nakar, E. 2013, What Can We Learn from the Rising Light Curves of Radioactively Powered Supernovae?, ApJ, 769, 67 https://doi.org/10.1088/0004-637X/769/1/67
  61. Piro, A. L., & Nakar, E. 2014, Constraints on Shallow $^{56}Ni$ from the Early Light Curves of Type Ia Supernovae, ApJ, 784, 85 https://doi.org/10.1088/0004-637X/784/1/85
  62. Rabinak, I., & Waxman, E. 2011, The Early UV/Optical Emission from Core-Collapse Supernovae, ApJ, 728, 63 https://doi.org/10.1088/0004-637X/728/1/63
  63. Shappee, B. J., Piro, A. L., Stanek, K. Z., et al. 2018, Strong Evidence against a Non-degenerate Companion in SN 2012cg, ApJ, 855, 6 https://doi.org/10.3847/1538-4357/aaa1e9
  64. Silverman, J. M., Ganeshalingam, M., Cenko, S. B., et al. 2012, The Very Young Type Ia Supernova 2012cg: Discovery and Early-Time Follow-Up Observations, ApJL, 756, L7 https://doi.org/10.1088/2041-8205/756/1/L7
  65. Smartt, S. J., Maund, J. R., Hendry, M. A., et al. 2004, Detection of a Red Supergiant Progenitor Star of a Type II-Plateau Supernova, Sci, 303, 499 https://doi.org/10.1126/science.1092967
  66. Smith, M., Nichol, R. C., Dilday, B., et al. 2012, The SDSS-II Supernova Survey: Parameterizing the Type Ia Supernova Rate as a Function of Host Galaxy Properties, ApJ, 755, 61 https://doi.org/10.1088/0004-637X/755/1/61
  67. Soker, N. 2015, The Circumstellar Matter of Supernova 2014J and the Core-Degenerate Scenario, MNRAS, 450, 1333 https://doi.org/10.1093/mnras/stv699
  68. Sparks, W. M., & Stecher, T. P. 1974, Supernova: The Result of the Death Spiral of a White Dwarf into a Red Giant, ApJ, 188, 149 https://doi.org/10.1086/152697
  69. Tanikawa, A., Nakasato, N., Sato, Y., Nomoto, K., Maeda, K., & Hachisu, I. 2015, Hydrodynamical Evolution of Merging Carbon-Oxygen White Dwarfs: Their Pre-Supernova Structure and Observational Counterparts, ApJ, 907, 40
  70. Troja, E., Piro, L., van Eerten, H., et al. 2017, The X-Ray Counterpart to the Gravitational-Wave Event GW170817, Nature, 551, 71 https://doi.org/10.1038/nature24290
  71. Van Dyk, S. D., Cenko, S. B., Poznanski, D., et al. 2012a, The Red Supergiant Progenitor of Supernova 2012aw(PTF12bvh) in Messier 95, ApJ, 756, 131 https://doi.org/10.1088/0004-637X/756/2/131
  72. Van Dyk, S. D., Davidge, T. J., Elias-Rosa, N., et al. 2012b, Supernova 2008bk and Its Red Supergiant Progenitor, AJ, 143, 19 https://doi.org/10.1088/0004-6256/143/1/19
  73. Van Dyk, S. D., Zheng, W. K., Clubb, K. I., et al. 2013, The Progenitor of Supernova 2011dh has Vanished, ApJL, 772, L32 https://doi.org/10.1088/2041-8205/772/2/L32
  74. Webbink, R. F. 1984, Double White Dwarfs as Progenitors of R Coronae Borealis Stars and Type I Supernovae, ApJ, 277, 355 https://doi.org/10.1086/161701
  75. Whelan, J., & Iben, I. Jr. 1973, Binaries and Supernovae of Type I, ApJ, 186, 1007 https://doi.org/10.1086/152565
  76. Yamanaka, M., Maeda, K., Kawabata, M., et al. 2014, Early-Phase Photometry and Spectroscopy of Transitional Type Ia SN 2012ht: Direct Constraint on the Rise Time, ApJL, 782, L35 https://doi.org/10.1088/2041-8205/782/2/L35
  77. Yoon, S.-C. 2015, Evolutionary Models for Type Ib/c Supernova Progenitors, PASA, 32, e015 https://doi.org/10.1017/pasa.2015.16
  78. Yoon, S.-C., Dessart, L., & Clocchiatti, A. 2017, Type Ib and IIb Supernova Progenitors in Interacting Binary Systems, ApJ, 840, 10 https://doi.org/10.3847/1538-4357/aa6afe
  79. Yoon, S.-C., Podsiadlowski, P., & Rosswog, S. 2007, Remnant Evolution after a Carbon-Oxygen White Dwarf Merger, MNRAS, 380, 933 https://doi.org/10.1111/j.1365-2966.2007.12161.x
  80. Yoon, S.-C., Woosley, S. E., & Langer, N. 2010, Type Ib/c Supernovae in Binary Systems. I. Evolution and Properties of the Progenitor Stars, ApJ, 725, 940 https://doi.org/10.1088/0004-637X/725/1/940
  81. Zheng, W., Silverman, J. M., Filippenko, A. V., et al. 2013, The Very Young Type Ia Supernova 2013dy: Discovery, and Strong Carbon Absorption in Early-Time Spectra, ApJL, 778, L15 https://doi.org/10.1088/2041-8205/778/1/L15