Figure 1. Model predictions of the shock-heated emission light curves at 50 Mpc, overlayed on the best-fit early light curve of SN 2015F (Im et al. 2015b) that is fitted to the data after ~ 1 day after the explosion and shifted to 50 Mpc (the solid black line). The best-fit early light curve of SN 2015F represents a typical SN Ia light curve due to radioactive decay. The dashed lines are for Rabinak & Waxman (2011) for a CC SN, and the dotted lines are for Kasen (2010) due to the shock-heated emission from a companion star in SN Ia. The shock-heated emission from SN Ia is expected to be anisotropic, and can be fainter by 2.5 mag. The case plotted here is for the most optimal viewing angle.
Figure 2. MNUV (AB) versus distance (Mpc) of IMSNG galaxies (red squares), plotted over galaxies from Bai et al. (2015) (gray circles). The area within the black dashed line denotes the region where we selected IMSNG galaxies.
Figure 3. The locations of the telescopes used by IMSNG. The background world map is taken from http://trip8.co.
Figure 4. The occurrence of SNe per year per galaxy (SN rate) as a function of FUV (blue) or NUV (red) magnitudes for galaxies within 50 Mpc. The rates were examined over the period of 2006-2016.
Figure 5. The emergence of SN 2017gax (SN Ib/Ic) in NGC 1672 which is caught by SNUCAM-II on LSGT (Im et al. 2015b; Choi & Im 2017), one of the IMSNG telescopes (Im et al. 2017a). Each image shows a stack of three 180 sec exposure frames in r-band, and the green circle with a ra-dius of 20:000 indicates the location of the SN. This example demonstrates that the high cadence IMSNG observation can catch the early optical light curves of SNe. The UT date of the observation is also indicated in each image.
Figure 6. (Left) A single exposure (60 seconds) R-band image near NGC 895 galaxy. A part of NGC 895 is visible on the left. (Right) A stacked R-band image (2.37 hours) of the same eld. The data taken from 2013 to 2016 were used. A low SB satellite galaxy candidate is marked as a large, thick arrow. Merging features are visible in the deep image for a galaxy on the top and noted with small arrows.
Table 1 IMSNG target galaxies
Table 2 The current list of telescopes in the IMSNG network
Table 3 SNe and other transients in IMSNG galaxies (2014-2018)
References
- Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2017a, GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence, PRL, 119, 141101 https://doi.org/10.1103/PhysRevLett.119.141101
- Abbott, B. P., Abbott, R., Abbott, T. D., et al. 2017b, Multi-Messenger Observations of a Binary Neutron Star Merger, ApJL, 848, 12 https://doi.org/10.3847/1538-4357/aa8b77
- Bai, Y., Liu, J., & Wang, S. 2015, An Updated Ultraviolet Catalog of GALEX Nearby Galaxies, ApJS, 220, 6 https://doi.org/10.1088/0067-0049/220/1/6
- Bersten, M. C., Benvenuto, O. G., Nomoto, K., et al. 2012, The Type IIb Supernova 2011dh from a Supergiant Progenitor, ApJ, 757, 31 https://doi.org/10.1088/0004-637X/757/1/31
- Berton, M., Congiu, E., Benetti, S., et al. 2018, ePESSTO Spectroscopic Classication of Optical Transients, ATel, 12216
- Blagorodnova, N., Kotak, R., Polshaw, J., et al. 2017, Common Envelope Ejection for a Luminous Red Nova in M101, ApJ, 834, 107 https://doi.org/10.3847/1538-4357/834/2/107
- Bloom, J. S., Kasen, D., Shen, K. J., et al. 2012, A Compact Degenerate Primary-Star Progenitor of SN 2011fe, ApJL, 744, L17 https://doi.org/10.1088/2041-8205/744/2/L17
- Botticella, M. T., Cappellaro, E., Greggio, L., et al. 2017, Supernova Rates from The SUDARE VST-Omegacam Search II. Rates in a Galaxy Sample, A&A, 598, A50 https://doi.org/10.1051/0004-6361/201629432
- Botticella, M. T., Smartt, S. J., Kennicutt, R. C. Jr., Cappellaro, E., Sereno, M., & Lee, J. C. 2012, A Comparison between Star Formation Rate Diagnostics and Rate of Core Collapse Supernovae within 11 Mpc, A&A, 537, A132 https://doi.org/10.1051/0004-6361/201117343
- Branch, D., & Wheeler, J. C. 2017, Supernova Explosions: Astronomy and Astrophysics Library (Berlin: Springer)
- Cao, Y., Kasliwal, M. M., Chen, G., & Arcavi, I. 2015a, iPTF Observation of PSN J14021678+5426205, ATel, 7070
- Cao, Y., Kulkarni, S. R., Howell, D., et al. 2015b, A Strong Ultraviolet Pulse from a Newborn Type Ia Supernova, Nature, 521, 328 https://doi.org/10.1038/nature14440
- Choi, C., & Im, M. 2017, Seoul National University Camera II (SNUCAM-II): The New SED Camera for the Lee Sang Gak Telescope (LSGT), JKAS, 50, 71
- Choi, N., Park, W.-K., Lee, H.-I., Ji, T.-G., Jeon, Y., Im, M., & Pak, S. 2015, A New Auto-Guiding System for CQUEAN, JKAS, 48, 177
- Choi, S., Choi, C., & Im, M. 2018, Photometry of Fifteen New Variable Sources Discovered by IMSNG, AAVSO, 46, 1
- Chun, S.-H., Yoon, S.-C., Jung, M.-K., Kim, D. U., & Kim, J. 2018, Evolutionary Models of Red Supergiants: Evidence for a Metallicity-Dependent Mixing Length and Implications for Type IIP Supernova Progenitors, ApJ, 853, 79 https://doi.org/10.3847/1538-4357/aa9a37
- Ehgamberdiev, S. 2018, Modern Astronomy at the Maidanak Observatory in Uzbekistan, Nature Astronomy, 2, 349 https://doi.org/10.1038/s41550-018-0459-3
- Eldridge, J. J., Fraser, M., Smartt, S. J., Maund, J. R., & Crockett, R. M. 2013, The Death of Massive Stars - II. Observational Constraints on The Progenitors of Type Ibc Supernovae, MNRAS, 436, 774 https://doi.org/10.1093/mnras/stt1612
- Foley, R. J., Challis, P. J., Filippenko, A. V., et al. 2012, Very Early Ultraviolet and Optical Observations of the Type Ia Supernova 2009ig, ApJ, 744, 38 https://doi.org/10.1088/0004-637X/744/1/38
- Fraser, M., Ergon, M., Eldridge, J. J., et al. 2011, SN 2009md: Another Faint Supernova from a Low-Mass Progenitor, MNRAS, 417, 1417 https://doi.org/10.1111/j.1365-2966.2011.19370.x
- Gao, Y., & Pritchet, C. 2013, Correlations between SDSS Type Ia Supernova Rates and Host Galaxy Properties, AJ, 145, 83 https://doi.org/10.1088/0004-6256/145/3/83
- Gil de Paz, A., Boissier, S., Madore, B. F., et al. 2007, The GALEX Ultraviolet Atlas of Nearby Galaxies, ApJS, 173, 185 https://doi.org/10.1086/516636
- Goobar, A., Kormer, M., Siverd, R., et al. 2015, Constraints on the Origin of the First Light from SN 2014J, ApJ, 799, 106 https://doi.org/10.1088/0004-637X/799/1/106
- Goranskij, V. P., Barsukova, E. A., Spiridonova, O. I., et al. 2016, Photometry and Spectroscopy of the Luminous Red Nova PSNJ14021678+5426205 in the Galaxy M101, Astrophysical Bulletin, 71, 82 https://doi.org/10.1134/S1990341316010090
- Graur, O., Bianco, F. B., Huang, S., et al. 2017a, LOSS Revisited. I. Unraveling Correlations between Supernova Rates and Galaxy Properties, as Measured in a Reanalysis of the Lick Observatory Supernova Search, ApJ, 837, 120 https://doi.org/10.3847/1538-4357/aa5eb8
- Graur, O., Bianco, F. B., Modjaz, M., et al. 2017b, LOSS Revisited. II. The Relative Rates of Different Types of Supernovae Vary between Low- and High-Mass Galaxies, ApJ, 837, 120 https://doi.org/10.3847/1538-4357/aa5eb8
- Hachisu, I., Kato, M., & Nomoto, K. 1996, A New Model for Progenitor Systems of Type Ia Supernovae, ApJL, 470, L97 https://doi.org/10.1086/310303
- Han, W., Mack, P., Lee, C.-U., et al. 2005, Development of a 1-m Robotic Telescope System, PASJ, 57, 821 https://doi.org/10.1093/pasj/57.5.821
- Han, Z., & Podsiadlowski, Ph. 2004, The Single-Degenerate Channel for the Progenitors of Type Ia Supernovae, MNRAS, 350, 1301 https://doi.org/10.1111/j.1365-2966.2004.07713.x
- Hong, J., Im, M., Kim, M., & Ho, L. C. 2015, Correlation between Galaxy Mergers and Luminous Active Galactic Nuclei, ApJ, 804, 34 https://doi.org/10.1088/0004-637X/804/1/34
- Hosseinzadeh, G., Sand, D. J., Velenti, S., et al. 1997, Early Blue Excess from the Type Ia Supernova 2017cbv and Implications for Its Progenitor, ApJL, 845, L11 https://doi.org/10.3847/2041-8213/aa8402
- Iben, I. Jr., & Tutukov, A. V. 1984, Supernovae of Type I as End Products of the Evolution of Binaries with Components of Moderate Initial Mass (M not Greater than About 9 Solar Masses), ApJS, 54, 335 https://doi.org/10.1086/190932
- Im, M., Choi, C., & Kim, K. 2015a, Lee Sang Gak Telescope (LSGT): A Remotely Operated Robotic Telescope for Education and Research at Seoul National University, JKAS, 48, 207
- Im, M., Choi, C., Lee, H. M., et al. 2017a, LIGO/Virgo G297595: LSGT Observation of Nearby Galaxies, GCN, 21885
- Im, M., Choi, C., Yoon, S.-C., et al. 2015b, The Very Early Light Curve of SN 2015F in NGC 2442: A Possible Detection of Shock-Heated Cooling Emission and Constraints on SN Ia Progenitor System, ApJS, 221, 22 https://doi.org/10.1088/0067-0049/221/1/22
- Im, M., Ko, J., Cho, Y., Choi, C., Joen, Y., Lee, I., & Ibrahimov, M. 2010, Seoul NAtional University 4K x 4K Camera (SNUCAM) for Maidanak Observatory, JKAS, 43, 75
- Im, M., Yoon, Y., Lee, S.-K., et al. 2017b, Distance and Properties of NGC 4993 as the Host Galaxy of the Gravitational- Wave Source GW170817, ApJL, 849, 16 https://doi.org/10.3847/1538-4357/aa8d6c
- Kasen, D. 2010, Seeing the Collision of a Supernova with Its Companion Star, ApJ, 708, 1025 https://doi.org/10.1088/0004-637X/708/2/1025
- Kasliwal, M. M. 2012, Systematically Bridging the Gap between Novae and Supernovae, PASA, 29, 482 https://doi.org/10.1071/AS11061
- Kim, E., Park, W.-K., Jeong, H., et al. 2011, Auto-Guiding System for CQUEAN (Camera for Quasars in Early Universe), JKAS, 44, 115
- Kim, J., Karouzos, M., Im, M., et al. 2018, Intra-Night Optical Variability of Active Galactic Nuclei in the Cosmos Field with the KMTNet, JKAS, 51, 89
- Kim, S., Jeon, Y., Lee, H.-I., et al. 2016, Development of SED Camera for Quasars in Early Universe (SQUEAN), PASP, 128, 5004
- Kulkarni, S., R., Ofek, E. O., Rau, A., et al. 2007, An Unusually Brilliant Transient in the Galaxy M85, Nature, 447, 458 https://doi.org/10.1038/nature05822
- Langer, N., Deutschmann, A., Wellstein, S., & Hoflich, P. 2000, The Evolution of Main Sequence Star + White Dwarf Binary Systems towards Type Ia Supernovae, A&A, 362, 1046
- Li, X.-D., & van den Heuvel, E. P. J. 1997, Evolution of White Dwarf Binaries: Supersoft X-Ray Sources and Progenitors of Type Ia Supernovae, A&A, 322, L9
- Lim, J., Chang, S., Pak, S., Kim, Y., Park, W.-K., & Im, M. 2013, Focal Reducer for CQUEAN (Camera for QUasars in EArly uNiverse), JKAS, 46, 161
- Maeda, K., & Terada, Y. 2016, Progenitors of Type Ia Supernovae, IJMP D, 25, 1630024
- Maoz, D., & Mannucci, F. 2012, Type-Ia Supernova Rates and the Progenitor Problem: A Review, PASA, 29, 447 https://doi.org/10.1071/AS11052
- Nakar, E., & Sari, R. 2010, Early Supernovae Light Curves Following the Shock Breakout, ApJ, 725, 904 https://doi.org/10.1088/0004-637X/725/1/904
- Noebauer, U. M., Kromer, M., Taubenberger, S., et al. 2017, Early Light Curves for Type Ia Supernova Explosion Models, MNRAS, 472, 2787 https://doi.org/10.1093/mnras/stx2093
- Nomoto, K. 1982, Accreting White Dwarf Models for Type I Supernovae. I - Presupernova Evolution and Triggering Mechanisms, ApJ, 253, 798 https://doi.org/10.1086/159682
- Nugent, P. E., Sullivan, M., Cenko, S. B., et al. 2011, Supernova SN 2011fe from an Exploding Carbon-Oxygen White Dwarf Star, Nature, 480, 344 https://doi.org/10.1038/nature10644
- Olling, R. P., Mushotsky, R., Shaya, E. J., et al. 2015, No Signature of Ejecta Interaction with a Stellar Companion in Three type Ia Supernovae, Nature, 521, 332 https://doi.org/10.1038/nature14455
- Ouchi, R., & Maeda, K. 2017, Radii and Mass-Loss Rates of Type IIb Supernova Progenitors, ApJ, 840, 90 https://doi.org/10.3847/1538-4357/aa6ea9
- Pakmor, R., Kromer, M., Taubenberger, S., Sim, S. A., Ropke, F. K., & Hillenbrandt, W. 2012, Normal Type Ia Supernovae from Violent Mergers of White Dwarf Binaries, ApJL, 747, L10 https://doi.org/10.1088/2041-8205/747/1/L10
- Park, H. S., Moon, D.-S., Zaritsky, D., et al. 2017, Dwarf Galaxy Discoveries from the KMTNet Supernova Program. I. The NGC 2784 Galaxy Group, ApJ, 848, 19 https://doi.org/10.3847/1538-4357/aa88ab
- Park, W.-K., Pak, S., Im, M., et al. 2012, Camera for Quasars in Early Universe (CQUEAN), PASP, 124, 839 https://doi.org/10.1086/667390
- Pastorello, A., Della Valle, M., Smartt, S. J., et al. 2007, A Very Faint Core-Collapse Supernova in M85, Nature, 449, 1
- Piro, A. L., & Morozova, V. S. 2016, Exploring the Potential Diversity of Early Type Ia Supernova Light Curves, ApJ, 826, 96 https://doi.org/10.3847/0004-637X/826/1/96
- Piro, A. L., & Nakar, E. 2013, What Can We Learn from the Rising Light Curves of Radioactively Powered Supernovae?, ApJ, 769, 67 https://doi.org/10.1088/0004-637X/769/1/67
-
Piro, A. L., & Nakar, E. 2014, Constraints on Shallow
$^{56}Ni$ from the Early Light Curves of Type Ia Supernovae, ApJ, 784, 85 https://doi.org/10.1088/0004-637X/784/1/85 - Rabinak, I., & Waxman, E. 2011, The Early UV/Optical Emission from Core-Collapse Supernovae, ApJ, 728, 63 https://doi.org/10.1088/0004-637X/728/1/63
- Shappee, B. J., Piro, A. L., Stanek, K. Z., et al. 2018, Strong Evidence against a Non-degenerate Companion in SN 2012cg, ApJ, 855, 6 https://doi.org/10.3847/1538-4357/aaa1e9
- Silverman, J. M., Ganeshalingam, M., Cenko, S. B., et al. 2012, The Very Young Type Ia Supernova 2012cg: Discovery and Early-Time Follow-Up Observations, ApJL, 756, L7 https://doi.org/10.1088/2041-8205/756/1/L7
- Smartt, S. J., Maund, J. R., Hendry, M. A., et al. 2004, Detection of a Red Supergiant Progenitor Star of a Type II-Plateau Supernova, Sci, 303, 499 https://doi.org/10.1126/science.1092967
- Smith, M., Nichol, R. C., Dilday, B., et al. 2012, The SDSS-II Supernova Survey: Parameterizing the Type Ia Supernova Rate as a Function of Host Galaxy Properties, ApJ, 755, 61 https://doi.org/10.1088/0004-637X/755/1/61
- Soker, N. 2015, The Circumstellar Matter of Supernova 2014J and the Core-Degenerate Scenario, MNRAS, 450, 1333 https://doi.org/10.1093/mnras/stv699
- Sparks, W. M., & Stecher, T. P. 1974, Supernova: The Result of the Death Spiral of a White Dwarf into a Red Giant, ApJ, 188, 149 https://doi.org/10.1086/152697
- Tanikawa, A., Nakasato, N., Sato, Y., Nomoto, K., Maeda, K., & Hachisu, I. 2015, Hydrodynamical Evolution of Merging Carbon-Oxygen White Dwarfs: Their Pre-Supernova Structure and Observational Counterparts, ApJ, 907, 40
- Troja, E., Piro, L., van Eerten, H., et al. 2017, The X-Ray Counterpart to the Gravitational-Wave Event GW170817, Nature, 551, 71 https://doi.org/10.1038/nature24290
- Van Dyk, S. D., Cenko, S. B., Poznanski, D., et al. 2012a, The Red Supergiant Progenitor of Supernova 2012aw(PTF12bvh) in Messier 95, ApJ, 756, 131 https://doi.org/10.1088/0004-637X/756/2/131
- Van Dyk, S. D., Davidge, T. J., Elias-Rosa, N., et al. 2012b, Supernova 2008bk and Its Red Supergiant Progenitor, AJ, 143, 19 https://doi.org/10.1088/0004-6256/143/1/19
- Van Dyk, S. D., Zheng, W. K., Clubb, K. I., et al. 2013, The Progenitor of Supernova 2011dh has Vanished, ApJL, 772, L32 https://doi.org/10.1088/2041-8205/772/2/L32
- Webbink, R. F. 1984, Double White Dwarfs as Progenitors of R Coronae Borealis Stars and Type I Supernovae, ApJ, 277, 355 https://doi.org/10.1086/161701
- Whelan, J., & Iben, I. Jr. 1973, Binaries and Supernovae of Type I, ApJ, 186, 1007 https://doi.org/10.1086/152565
- Yamanaka, M., Maeda, K., Kawabata, M., et al. 2014, Early-Phase Photometry and Spectroscopy of Transitional Type Ia SN 2012ht: Direct Constraint on the Rise Time, ApJL, 782, L35 https://doi.org/10.1088/2041-8205/782/2/L35
- Yoon, S.-C. 2015, Evolutionary Models for Type Ib/c Supernova Progenitors, PASA, 32, e015 https://doi.org/10.1017/pasa.2015.16
- Yoon, S.-C., Dessart, L., & Clocchiatti, A. 2017, Type Ib and IIb Supernova Progenitors in Interacting Binary Systems, ApJ, 840, 10 https://doi.org/10.3847/1538-4357/aa6afe
- Yoon, S.-C., Podsiadlowski, P., & Rosswog, S. 2007, Remnant Evolution after a Carbon-Oxygen White Dwarf Merger, MNRAS, 380, 933 https://doi.org/10.1111/j.1365-2966.2007.12161.x
- Yoon, S.-C., Woosley, S. E., & Langer, N. 2010, Type Ib/c Supernovae in Binary Systems. I. Evolution and Properties of the Progenitor Stars, ApJ, 725, 940 https://doi.org/10.1088/0004-637X/725/1/940
- Zheng, W., Silverman, J. M., Filippenko, A. V., et al. 2013, The Very Young Type Ia Supernova 2013dy: Discovery, and Strong Carbon Absorption in Early-Time Spectra, ApJL, 778, L15 https://doi.org/10.1088/2041-8205/778/1/L15