DOI QR코드

DOI QR Code

Design and Fabrication of Triple-Band Antenna with Three Branch Lines for WLAN Applications

세 개의 분기선로를 갖는 WLAN에 적용가능한 삼중대역 안테나 설계 및 제작

  • 하성재 (한국폴리텍대학 신기술연수센터 정보통신과) ;
  • 윤중한 (신라대학교 스마트전기전자공학부)
  • Received : 2018.11.07
  • Accepted : 2019.02.15
  • Published : 2019.02.28

Abstract

In this paper, a monopole antenna applicable to WLAN standardization is designed, fabricated, and tested. The proposed antenna is designed to have three microstrip lines based on microstrip feeding method and inserted one stub to enhance impedance characteristics. Then, it obtained triple band characteristics of the proposed antenna. We adjusted and optimized the lengths and width of the three microstrip lines and one inserted stub to obtain the required impedance bandwidth for this paper. The proposed antenna has $23.0mm(W){\times}53.1mm(L1)$ on a dielectric substrate of $24.0mm(W1){\times}60.0mm(L){\times}1.0mm$ size. From the fabrication and measurement results, bandwidths of 158 MHz (841 to 1000 MHz) for 900 MHz band, 630 MHz (2.32 to 2.95 GHz) for 2400 MHz band, and 1,040 MHz (4.95 to 5.99 GHz) for 5000 MHz band were obtained based on the impedance bandwidth. The fabricated antenna also obtained the measured gain and radiation pattern characteristics in the required triple band of the proposed antenna.

본 논문에서는 WLAN 표준화에 적합하도록 삼중대역 안테나를 설계, 제작 및 측정하였다. 마이크로스트립 급전방법을 적용하여 세 개의 마이크로스트립 선로를 갖도록 설계하였으며 임피던스 특성을 향상시키기 위해 하나의 스터브 추가하여 삼중대역 특성을 얻었다. 요구되는 주파수 대역과 임피던스 대역폭을 얻기 위해 세개 분기 선로의 길이와 폭을 설정하고 스터브 길이를 조정하고 최적화하였다. 제안된 안테나는 $24.0mm(W){\times}60.0mm(L){\times}1.0mm(t)$의 유전체 기판 위에 $23.0mm(W_2+W_4){\times}53.1mm(L_1)$의 크기로 제작되었다. 제작 및 측정 결과로부터 900 MHz에서는 159 MHz (841~1000 MHz), 2400 MHz 대역에서는 630 MHz (2.32~2.95 GHz) 그리고 5000 MHz 대역에서는 1,040 MHz (4.95~5.99 GHz)의 대역폭을 얻었다. 또한 무반사실의 측정결과로부터 제작된 안테나의 이득과 방사패턴 특성을 확인하였다.

Keywords

KCTSAD_2019_v14n1_119_f0001.png 이미지

그림 1. 제안된 안테나의 구조 Fig. 1 Configuration of the proposed WLAN antenna

KCTSAD_2019_v14n1_119_f0002.png 이미지

그림 2. L2 길이 변화에 따른 반사손실 특성 Fig. 2 Return loss characteristic of the effect of the L2.

KCTSAD_2019_v14n1_119_f0003.png 이미지

그림 3. L3 길이 변화에 따른 반사손실 특성 Fig. 3 Return loss characteristic of the effect of the L3.

KCTSAD_2019_v14n1_119_f0004.png 이미지

그림 4. L9 길이 변화에 따른 반사손실 특성 Fig. 4 Return loss characteristic according to the length of L9.

KCTSAD_2019_v14n1_119_f0005.png 이미지

그림 5. 스터브 유무에 따른 반사손실 특성 Fig. 5 Return loss characteristic according to the with and without stub

KCTSAD_2019_v14n1_119_f0006.png 이미지

그림 6. 제안된 안테나의 설계 과정에 따른 반사손실 특성 Fig. 6 Return loss characteristics of the proposed antenna design process

KCTSAD_2019_v14n1_119_f0007.png 이미지

그림 7. 제안된 안테나의 전류 분포(a) 922.5 MHz, (b) 2.42 GHz, and (c) 5.44 GHz. Fig. 7 The current density of proposed antenna (a) 922.5 MHz, (b) 2.42 GHz, and (c) 5.44 GHz.

KCTSAD_2019_v14n1_119_f0008.png 이미지

그림 8. 제안된 안테나의 시제품 (a) 앞면 그리고 (b) 뒷면 Fig. 8 Prototype of the proposed antenna: (a) front view and (b) back view

KCTSAD_2019_v14n1_119_f0009.png 이미지

그림 9. 제안된 안테나의 측정된 반사손실 결과 Fig. 9 The measured return loss results of the proposed antenna

KCTSAD_2019_v14n1_119_f0010.png 이미지

그림 10. 910 MHz에서 측정된 3-D 방사패턴 Fig. 10 Measured 3-D radiation pattern in 910 MHz

KCTSAD_2019_v14n1_119_f0011.png 이미지

그림 11. 2.44 GHz에서 측정된 3-D 방사패턴 Fig. 11 Measured 3-D radiation pattern in 2.44 GHz

KCTSAD_2019_v14n1_119_f0012.png 이미지

그림 12. 5.35 GHz에서 측정된 3-D 방사패턴 Fig. 12 Measured 3-D radiation pattern in 5.35 GHz

KCTSAD_2019_v14n1_119_f0013.png 이미지

그림 13. 5.75 GHz에서 측정된 3-D 방사패턴 Fig. 13 Measured 3-D radiation pattern in 5.75 GHz

KCTSAD_2019_v14n1_119_f0014.png 이미지

그림 14. 제안된 안테나의 측정된 최대 그리고 평균 이득 Fig. 14 Measured peak and average gains of the proposed antenna

표 1. 설계된 안테나의 파라미터들 Table 1. parameters of the designed antenna

KCTSAD_2019_v14n1_119_t0001.png 이미지

References

  1. B. Jeong, S. Jang, S. Yoon, and D. Kim, "Development direction of WLAN technology treads to IEEE 802.11ax standardization," Electronics and Telecommunications Trends, vol. 27, no. 2, 2012, pp. 1-10.
  2. J. Son, U. An, J. Ko, and K. Kwak, "Recent tread to IEEE 802.11ax next-generation WLAN standardization," Electronics and Telecommunications Trends, vol. 31, no. 10, 2016, pp. 3-9.
  3. Y. Park, "Characteristics of patch antenna for WLAN," J. of the Korea Institute of Electronic Communication Sciences, vol. 6, no. 6, 2011, pp. 803-808. https://doi.org/10.13067/JKIECS.2011.6.6.803
  4. O. Kim, "Design of dual band microstrip antenna for wireless communication applications," J. of the Korea Institute of Electronic Communication Sciences, vol. 7, no. 6, 2012, pp. 1275-1279. https://doi.org/10.13067/JKIECS.2012.7.6.1275
  5. Y. Seo, J. Jung, H. Lee, and Y. Lim, "Design of circular monopole antenna with symmetrically folded stub for WLAN operation," Microwave and Optical Technology Letters, vol. 54, no. 7, 2012, pp. 1549-1552. https://doi.org/10.1002/mop.26845
  6. J. Hoon, Y. Rhee, and Y. Jang, "A study on the rectangular ring open-ended monopole antenna with a vertical strip for WLAN dual band operations," Microwave and Optical Technology Letters, vol. 55, no. 3, 2013, pp. 619-624. https://doi.org/10.1002/mop.27348
  7. Y. Koo and D. Im, "Design and manufacture of modified ring antenna with stub and ground slot for WLAN Applications," J. of Information and Communication Convergence Engineering, vol. 17, no. 10, 2013, pp. 2285-2272.
  8. C. Bark, M. Dim, and H. Sung, "Design of compact microstrip patch antenna for WLAN of IEEE 802.11a," J. of Korea Information Science, vol. 19, no. 2, 2013, pp. 611-617.
  9. J. Yoon, "Design and manufacture of CPW-fed two arc-shaped antenna for WLAN applications," J. of the korea Institute of Information and Communication Engineering, vol. 19, no. 4, 2015, pp. 765-771. https://doi.org/10.6109/jkiice.2015.19.4.765
  10. W. Yeo, K. Lai, K. Yeap, P. Teh, and H. Nisar, "A compact dual band hook shaped antenna for wireless application," Microwave and Optical Technology Letters, vol. 59, no. 5, 2017, pp. 1882-1887. https://doi.org/10.1002/mop.30651
  11. J. Yoon, "A design and implementation of dual band monopole antenna with two arc-shaped line for WLAN application," J. of the Korea Institute of Electronic Communication Sciences, vol. 12, no. 6, 2017, pp. 1049-1056. https://doi.org/10.13067/JKIECS.2017.12.6.1049
  12. B. Kang, S. Rhee, M. Jeong, D. M. Choi, and N. Kim, "Design and fabrication of dual band planar monopole antenna with defected ground structure for WLAN application," J. of the Korea Institute of Electromagnetic and Sciences, vol. 29, no. 1, 2018, pp. 42-49. https://doi.org/10.5515/KJKIEES.2018.29.1.42
  13. S. Park and J. Jung, "Modified Yagi dipole antenna for WLAN dual band operation," J. of the Korea Institute of Electronic Communication Sciences, vol. 13, no. 3, 2018, pp. 533-538. https://doi.org/10.13067/JKIECS.2018.13.3.533