DOI QR코드

DOI QR Code

Improvement of Energy Storage Characteristics of (Ba0.7Ca0.3)TiO3 Thick Films by the Increase of Electric Breakdown Strength from Nano-Sized Grains

절연파괴특성 향상을 위한 나노미세구조 (Ba0.7Ca0.3)TiO3 후막 제조 및 에너지 저장 특성 평가

  • Lee, Ju-Seung (Department of Materials Science & Engineering, Inha University) ;
  • Yoon, Songhyeon (Department of Materials Science & Engineering, Inha University) ;
  • Lim, Ji-Ho (Department of Materials Science & Engineering, Inha University) ;
  • Park, Chun-Kil (Department of Materials Science & Engineering, Inha University) ;
  • Ryu, Jungho (School of Materials Science & Engineering, Yeungnam University) ;
  • Jeong, Dae-Yong (Department of Materials Science & Engineering, Inha University)
  • 이주승 (인하대학교 신소재공학과) ;
  • 윤송현 (인하대학교 신소재공학과) ;
  • 임지호 (인하대학교 신소재공학과) ;
  • 박춘길 (인하대학교 신소재공학과) ;
  • 류정호 (영남대학교 신소재공학부) ;
  • 정대용 (인하대학교 신소재공학과)
  • Received : 2018.11.09
  • Accepted : 2018.12.13
  • Published : 2019.02.27

Abstract

Lead free $(Ba_{0.7}Ca_{0.3})TiO_3$ thick films with nano-sized grains are prepared using an aerosol deposition (AD) method at room temperature. The crystallinity of the AD thick films is enhanced by a post annealing process. Contrary to the sharp phase transition of bulk ceramics that has been reported, AD films show broad phase transition behaviors due to the nano-sized grains. The polarization-electric hysteresis loop of annealed AD film shows ferroelectric behaviors. With an increase in annealing temperature, the saturation polarization increases because of an increase in crystallinity. However, the remnant polarization and cohesive field are not affected by the annealing temperature. BCT AD thick films annealed at $700^{\circ}C/2h$ have an energy density of $1.84J/cm^3$ and a charge-discharge efficiency of 69.9 %, which is much higher than those of bulk ceramic with the same composition. The higher energy storage properties are likely due to the increase in the breakdown field from a large number of grain boundaries of nano-sized grains.

Keywords

References

  1. J. Claude, Y. Lu, K. Li and Q. Wang, Chem. Mater., 20, 2078 (2008). https://doi.org/10.1021/cm800160r
  2. A. Chauhan, S. Patel, R. Vaish and C. R. Bowen, Materials, 8, 8009 (2015). https://doi.org/10.3390/ma8125439
  3. Q. Chen, Y. Wang, X. Zhou, Q. M. Zhang and S. Zhang, Appl. Phys. Lett., 92, 1 (2008).
  4. Z. Cheng, M. Lin, S. Wu, Y. Thakur, Y. Zhou, D. Y. Jeong, Q. Shen and Q. M. Zhang, Appl. Phys. Lett., 106, 202902 (2015). https://doi.org/10.1063/1.4921485
  5. M. N. Habashi and S. K. Asl, Korean J. Mater. Res., 27, 248 (2017). https://doi.org/10.3740/MRSK.2017.27.5.248
  6. D. Y. Yang, S. B. Kang, J. H. Lim, S. H. Yoon, J. Ryu, J. J. Choi, T. S.Velayutham, H. S. Kim and D. Y. Jeong, Met. Mater. Int., 23, 1045 (2017). https://doi.org/10.1007/s12540-017-7019-8
  7. V. Annapureddy, S. M. Na, G. T. Hwang, M. G. Kang, R. Sriramdas, H. Palneedi, W. H. Yoon, B. D. Hahn, J. W. Kim, C. W. Ahn, D. S. Park, J. J. Choi, D. Y. Jeong, A. B. Flatau, M. Peddigari, S. Priya, K. H. Kim and J. Ryu, Energy Environ. Sci., 11, 818 (2018). https://doi.org/10.1039/C7EE03429F
  8. D. Xue, Y. Zhou, H. Bao, C. Zhou, J. Gao and X. Ren, J. Appl. Phys., 109, 1 (2011). https://doi.org/10.1152/japplphysiol.00364.2010
  9. S. Zhang, F. Li, F. Yu, X. Jiang, H. Y. Lee, J. Luo and T. R. Shrout, J. Korean Ceram. Soc., 55, 419 (2018). https://doi.org/10.4191/kcers.2018.55.5.12
  10. M. R. Panigrahi and S. Panigrahi, Phys. B (Amsterdam, Neth.), 404, 4267 (2009). https://doi.org/10.1016/j.physb.2009.08.012
  11. J. Akedo, J. Am. Ceram. Soc., 89, 1834 (2006). https://doi.org/10.1111/j.1551-2916.2006.01030.x
  12. J. H. Lim, C. K. Park, S. H. Cho, J. W. Kim, H. S. Kim and D. Y. Jeong, Ceram. Int., 44, 10829 (2018). https://doi.org/10.1016/j.ceramint.2018.03.128
  13. S. W. Jung and S. M. Koo, J. Nanosci. Nanotechnol., 16, 11402 (2016). https://doi.org/10.1166/jnn.2016.13517
  14. J. W. Kim, J. H. Lim, S. H. Kim, C. Y. Young, J. Ryu and D. Y Jeong, J. Ceram. Process. Res., 19, 243 (2018). https://doi.org/10.36410/JCPR.2018.19.3.243
  15. B. G. Baraskar, R. C. Kambale, A. R. James, M. L. Mahesh, C. V. Ramana and Y. D. Kolekar, J. Am. Ceram. Soc., 100, 5755 (2017). https://doi.org/10.1111/jace.15073
  16. C. K. Park, S. H. Lee, J. H. Lim, J. Ryu, D. H. Choi and D. Y. Jeong, Ceram. Int., 44, 20111, (2018). https://doi.org/10.1016/j.ceramint.2018.07.303
  17. V. S. Puli, D. K. Pradhan, B. C. Riggs, D. B. Chrisey and R. S. Katiyar, J. Alloys Compd., 584, 369 (2014). https://doi.org/10.1016/j.jallcom.2013.09.108