References
- ASCE (2007), Seismic rehabilitation of existing buildings; ASCE 41-06, Reston, VA, USA.
- Cassiano, D., D'Aniello, M., Rebelo, C., Landolfo, R. and Da Silva, L.S. (2016), "Influence of Seismic design rules on the robustness of steel moment resisting frames", Steel Compos. Struct., Int. J., 21(3), 479-500. https://doi.org/10.12989/scs.2016.21.3.479
- Chen, C.H., Zhu, Y.F., Yao, Y. and Huang, Y. (2016), "Progressive collapse analysis of steel frames structure based on energy principle", Steel Compos. Struct., Int. J., 21(3), 553-571. https://doi.org/10.12989/scs.2016.21.3.553
- Chopra, A.K. (1995), Dynamics of Structures: Theory and Applications to Earthquake Engineering, Prentice-Hall, NJ, USA.
- Clough, R.W. and Penzien, J. (1993), Dynamics of Structures, McGraw-Hill, Inc., NY, USA.
- Dusenberry, D.O. and Hamburger, R.O. (2006), "Practical means for energy-based analyses of disproportionate collapse potential", J. Perform. Constr. Facil., 20(4), 336-348. https://doi.org/10.1061/(ASCE)0887-3828(2006)20:4(336)
- Ellingwood, B.R. and Dusenberry, D.O. (2009), "Building design for abnormal loads and progressive collapse", Comput-Aided Civil Inf., 20(3), 194-205. https://doi.org/10.1111/j.1467-8667.2005.00387.x
- Ferraioli, M. (2016), "Dynamic increase factor for pushdown analysis of seismically designed steel moment-resisting frames", Int. J. Steel Struct., 16(3), 857-875. https://doi.org/10.1007/s13296-015-0056-6
- Ferraioli, M. (2017a), "Dynamic increase factor for nonlinear static analysis of RC frame buildings against progressive collapse", Int. J. Civil Eng. DOI: https://doi.org/10.1007/s40999-017-0253-0
- Ferraioli, M. (2017b), "Multi-mode pushover procedure for deformation demand estimates of steel moment-resisting frames", Int. J. Steel Struct.- Ingegneria Sismica, 17(2), 653-676. https://doi.org/10.1007/s13296-017-6022-8
- Ferraioli, M. and Avossa, A.M. (2012), "Progressive collapse of seismic resistant multistory frame buildings", Proceedings of the 3rd International Symposium on Life-Cycle Civil Engineering, IALCCE 2012, Vienna, Austria, October.
- Ferraioli, M., Abruzzese, D., Miccoli, L., Vari, A. and Di Lauro, G. (2010), "Structural identification from environmental vibration testing of an asymmetric-plan hospital building in Italy", Proceedings of the Final Conference on COST Action C26: Urban Habitat Constructions under Catastrophic Events, Napoli, Italy, September.
- Ferraioli, M., Avossa, A.M. and Mandara, A. (2014), "Assessment of Progressive Collapse Capacity of Earthquake-Resistant Steel Moment Frames Using Pushdown Analysis", Open Constr. Build. Tech. J., 8, 324-336. https://doi.org/10.2174/1874836801408010324
- Ferraioli, M., Lavino, A., Mandara, A., Donciglio, M. and Formisano A. (2018a), "Seismic and robustness design of steel frame buildings", Key Eng. Mat., 763, 116-123. https://doi.org/10.4028/www.scientific.net/KEM.763.116
- Ferraioli, M., Lavino, A. and Mandara, A. (2018b), "Assessment of dynamic increase factors for progressive collapse analysis of steel frames subjected to column failure", Int. J. Steel Struct. - Ingegneria Sismica, 35(2), 67-77.
- Ferraioli, M., Lavino, A. and Mandara, A. (2018c), "Multi-mode pushover procedure to estimate higher modes effects on seismic lnelastic response of steel moment-resisting frames", Key Eng. Mat., 763, 82-89. https://doi.org/10.4028/www.scientific.net/KEM.763.82
- Ferraioli, M., Lavino, A. and Mandara, A. (2018d), "Effectiveness of multi-mode pushover analysis procedure for the estimation of seismic demands of steel moment frames", Int. J. Steel Struct. - Ingegneria Sismica, 35(2), 78-90.
- GSA (2003), Progressive Collapse Analysis and Design Guidelines for New Federal Office Buildings and Major Modernization Projects; General Services Administration, Washington, DC, USA.
- GSA (2013), Alternate Path Analysis and Design Guidelines for Progressive Collapse Resistance, General Services Administration, Washington, DC, USA.
- Italian Code (2018), D.M. 170.01.18. G.U. No.42, February 4. [In Italian]
- Izzuddin, B.A., Vlassis, A.G., Elghazouli, A.Y. and Nethercot, D.A. (2008), "Progressive collapse of multi-storey buildings due to sudden column loss - Part I: Simplified assessment framework", Eng. Struct., 30(5), 1308-1318. https://doi.org/10.1016/j.engstruct.2007.07.011
- Kim, J. and Park, J. (2008), "Design of steel moment frames considering progressive collapse", Steel Compos. Struct., Int. J., 8(1), 85-98. https://doi.org/10.12989/scs.2008.8.1.085
- Kim, T., Kim, J. and Park, J. (2009), "Investigation of progressive collapse-resisting capability of steel moment frames using pushdown analysis", J. Perform. Constr. Facil., 23(5), 327-335. https://doi.org/10.1061/(ASCE)0887-3828(2009)23:5(327)
- Liu, M. (2013), "A new dynamic increase factor for nonlinear static alternate path analysis of building frames against progressive collapse", Eng. Struct., 48, 666-673. https://doi.org/10.1016/j.engstruct.2012.12.011
- Mashhadi, J.J. (2016), "Effects of damping ratio on dynamic increase factor in progressive collapse", Steel Compos. Struct., Int. J., 22(3), 677-690. https://doi.org/10.12989/scs.2016.22.3.677
- Mashhadi, J.J. (2017), "Effects of Postelastic Stiffness Ratio on Dynamic Increase Factor in Progressive Collapse", J. Perform. Constr. Facil., 31(6).
- Mashhadi, J.J. and Saffari, H. (2017), "Dynamic increase factor based on residual strength to assess progressive collapse", Steel Compos. Struct., Int. J., 25(5), 617-624.
- McKay, A., Marchand, K. and Diaz, M. (2012), "Alternate path method in progressive collapse analysis: variation of dynamic and nonlinear load increase factors", Pract. Period. Struct. Des. and Constr., ASCE, 17(4), 152-160. https://doi.org/10.1061/(ASCE)SC.1943-5576.0000126
- Mirtaheri, M. and Zoghi, M. (2016), "Design guides to resist progressive collapse for steel structures", Steel Compos. Struct., Int. J., 20(2), 357-378. https://doi.org/10.12989/scs.2016.20.2.357
- Ruth, P., Marchand, K.A. and Williamson, E.B. (2006), "Static equivalency in progressive collapse alternative path analysis reducing conservatism while retaining structural integrity", J. Perform. Constr. Facil., 20(4) 349-364. https://doi.org/10.1061/(ASCE)0887-3828(2006)20:4(349)
- Sasani, M. and Sagiroglu, S. (2008), Progressive collapse of reinforced concrete structures: a multihazard perspective. ACI Struct. J., 105(1), 96-103.
- SAP2000 (2014), Linear and nonlinear static and dynamic analysis of three-dimensional structures; Advanced Version 17.0, Analysis Ref. Manual, Computer and Structures, Berkeley, CA, USA.
- Stevens, D.J., Crowder, B., Hall, B. and Marchand, K. (2008), "Unified progressive collapse design requirements for DoD and GSA", ASCE Struct. Congr., pp. 1-10.
- Tsai, M.H. (2012), "Assessment of analytical load and dynamic increase factors for progressive collapse analysis of building frames", Adv. Struct. Eng., 15(1), 41-54. https://doi.org/10.1260/1369-4332.15.1.41
- Tsai, M.H. and Lin, B-H. (2009), "Dynamic amplification factor for progressive collapse resistance analysis of an RC building", Struct. Des. Tall Spec., 18, 539-557. https://doi.org/10.1002/tal.453
- UFC (2009), Design of Buildings to Resist Progressive Collapse; Department of Defense, Unified Facilities Criteria, UFC 4-023-03, Washington, DC, USA.
- UFC (2013), Design of Buildings to Resist Progressive Collapse; Department of Defense, Unified Facilities Criteria, UFC 4-023-03 Including Change 2 - 1 June 2013, Washington, DC, USA.
- Xu, G. and Ellingwood, B.R. (2011), "An energy-based partial pushdown analysis procedure for assessment of disproportionate collapse potential", J. Constr. Steel Res., 67, 547-555. https://doi.org/10.1016/j.jcsr.2010.09.001
- Yang, B. and Tan, K.H. (2013), "Experimental tests of different types of bolted steel beam-column joints under a centralcolumn-removal scenario", Eng. Struct., 54, 112-130. https://doi.org/10.1016/j.engstruct.2013.03.037
Cited by
- Simplified robustness assessment of steel framed structures under fire-induced column failure vol.35, pp.2, 2019, https://doi.org/10.12989/scs.2020.35.2.199
- Effect of fully restrained beam-to-column connection on the progressive collapse strength of steel moment frames vol.23, pp.8, 2020, https://doi.org/10.1177/1369433219898072
- Progressive Collapse Performance of Steel Beam-to-Column Connections: Critical Review of Experimental Results vol.15, pp.1, 2019, https://doi.org/10.2174/1874836802115010152
- Machine learning applications for assessment of dynamic progressive collapse of steel moment frames vol.36, 2022, https://doi.org/10.1016/j.istruc.2021.12.067