Acknowledgement
Supported by : National Research Foundation of Korea(NRF)
References
- M. Ya. Antonovsky, E.A. Aponina, Yu. A. Kuznetsov, Spatial-temporal structure of mixed-age forest boundary: The simplest mathematical model. WP-89-54. Laxenburg, Austria: International Institute for Applied Systems Analysis 1989.
- M. Ya. Antonovsky, E. A Aponina, Yu. A. Kuznetsov, On the stability analysis of the standing forest boundary, WP-91-010. Laxenburg, Austria: International Institute for Applied Systems Analysis 1991.
- N. C. Apreutesei, An optimal control prolem for a pest, predator, and plant system, Nonlinear Analysis: real world applications 13(2012), 1391-1400. https://doi.org/10.1016/j.nonrwa.2011.11.004
- A.J.V. Brandao, E. Fernandez-Cara, P.M.D. Magalhaes, M.A. Rojas-Medar, Theoretical analysis and control results for the FitzHugh-Nagumo equation, Electron. J. Differential Equations, 2008(164), 1-20.
- L. Zhang and B. Liu, Optimal control prolem for an ecosystem with two competing preys and one predator , J. Math. Anal. Appl. 424(2015), 201-220. https://doi.org/10.1016/j.jmaa.2014.10.093
- S.-U. Ryu, Optimal control for the forest kinematic model, East Asian Math. J. 31(2015), 311-319. https://doi.org/10.7858/eamj.2015.022
- A. Yagi, Abstract parabolic evolution equations and their applications, Springer-Verlag, Berlin (2010).