DOI QR코드

DOI QR Code

GLOBAL EXISTENCE OF STRONG SOLUTION FOR SOME CONTROLLED ODE-PDE SYSTEMS

  • Ryu, Sang-Uk (Department of Mathematics, Jeju National University)
  • Received : 2019.01.08
  • Accepted : 2019.01.20
  • Published : 2019.01.31

Abstract

This paper is concerned with the global existence of strong solution for the controlled ode-pde systems. Also, we consider the continuous dependence of solution on the control.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea(NRF)

References

  1. M. Ya. Antonovsky, E.A. Aponina, Yu. A. Kuznetsov, Spatial-temporal structure of mixed-age forest boundary: The simplest mathematical model. WP-89-54. Laxenburg, Austria: International Institute for Applied Systems Analysis 1989.
  2. M. Ya. Antonovsky, E. A Aponina, Yu. A. Kuznetsov, On the stability analysis of the standing forest boundary, WP-91-010. Laxenburg, Austria: International Institute for Applied Systems Analysis 1991.
  3. N. C. Apreutesei, An optimal control prolem for a pest, predator, and plant system, Nonlinear Analysis: real world applications 13(2012), 1391-1400. https://doi.org/10.1016/j.nonrwa.2011.11.004
  4. A.J.V. Brandao, E. Fernandez-Cara, P.M.D. Magalhaes, M.A. Rojas-Medar, Theoretical analysis and control results for the FitzHugh-Nagumo equation, Electron. J. Differential Equations, 2008(164), 1-20.
  5. L. Zhang and B. Liu, Optimal control prolem for an ecosystem with two competing preys and one predator , J. Math. Anal. Appl. 424(2015), 201-220. https://doi.org/10.1016/j.jmaa.2014.10.093
  6. S.-U. Ryu, Optimal control for the forest kinematic model, East Asian Math. J. 31(2015), 311-319. https://doi.org/10.7858/eamj.2015.022
  7. A. Yagi, Abstract parabolic evolution equations and their applications, Springer-Verlag, Berlin (2010).