참고문헌
- J. R. Cho, J. Park, and Y. Sano: Travel groupoids on infinite graphs, Czechoslovak Mathematical Journal 64 (2014) 763-766. https://doi.org/10.1007/s10587-014-0130-9
- J. R. Cho, J. Park, and Y. Sano: The non-confusing travel groupoids on a finite connected graph, Lecture Notes in Computer Science 8845 (2014) 14-17.
- J. R. Cho, J. Park, and Y. Sano: T-neighbor systems and travel groupoids on a graph, Graphs and Combinatorics 33 (2017) 1521-1529. https://doi.org/10.1007/s00373-017-1850-z
- L. Nebesky: An algebraic characterization of geodetic graphs, Czechoslovak Mathematical Journal 48(123) (1998) 701-710. https://doi.org/10.1023/A:1022435605919
- L. Nebesky: A tree as a finite nonempty set with a binary operation, Mathematica Bohemica 125 (2000) 455-458. https://doi.org/10.21136/MB.2000.126275
- L. Nebesky: New proof of a characterization of geodetic graphs, Czechoslovak Mathematical Journal 52(127) (2002) 33-39. https://doi.org/10.1023/A:1021715219620
- L. Nebesky: On signpost systems and connected graphs, Czechoslovak Mathematical Journal 55(130) (2005) 283-293. https://doi.org/10.1007/s10587-005-0022-0
- L. Nebesky: Travel groupoids, Czechoslovak Mathematical Journal 56(131) (2006) 659-675. https://doi.org/10.1007/s10587-006-0046-0
- D. K. Matsumoto and A. Mizusawa: A construction on smooth travel groupoids on finite graphs, Graphs and Combinatorics 32 (2016) 1117-1124. https://doi.org/10.1007/s00373-015-1630-6