DOI QR코드

DOI QR Code

ON SOME PROPERTIES OF J-CLASS OPERATORS

  • Received : 2017.04.29
  • Accepted : 2018.10.15
  • Published : 2019.01.31

Abstract

The notion of hypercyclicity was localized by J-sets and in this paper, we will investigate for an equivalent condition through the use of open sets. Also, we will give a J-class criterion, that gives conditions under which an operator belongs to the J-class of operators.

Keywords

References

  1. S. I. Ansari, Hypercyclic and cyclic vectors, J. Funct. Anal. 128 (1995), no. 2, 374-383. https://doi.org/10.1006/jfan.1995.1036
  2. M. R. Azimi and V. Muller, A note on J-sets of linear operators, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Math. RACSAM 105 (2011), no. 2, 449-453.
  3. F. Bayart and Matheron, Dynamics of linear operators, Cambridge Tracts in Mathematics, 179, Cambridge University Press, Cambridge, 2009.
  4. N. P. Bhatia and G. P. Szego, Stability theory of dynamical systems, Die Grundlehren der mathematischen Wissenschaften, Band 161, Springer-Verlag, New York, 1970.
  5. G. D. Birkhoff, Surface transformations and their dynamical applications, Acta Math. 43 (1922), no. 1, 1-119. https://doi.org/10.1007/BF02401754
  6. P. S. Bourdon and N. S. Feldman, Somewhere dense orbits are everywhere dense, Indiana Univ. Math. J. 52 (2003), no. 3, 811-819.
  7. J.-C. Chen and S.-Y. Shaw, Topological mixing and hypercyclicity criterion for sequences of operators, Proc. Amer. Math. Soc. 134 (2006), no. 11, 3171-3179. https://doi.org/10.1090/S0002-9939-06-08308-0
  8. G. Costakis, D. Hadjiloucas, and A. Manoussos, On the minimal number of matrices which form a locally hypercyclic, non-hypercyclic tuple, J. Math. Anal. Appl. 365 (2010), no. 1, 229-237. https://doi.org/10.1016/j.jmaa.2009.10.020
  9. G. Costakis and A. Manoussos, J-class operators and hypercyclicity, J. Operator Theory 67 (2012), no. 1, 101-119.
  10. G. Costakis and A. Peris, Hypercyclic semigroups and somewhere dense orbits, C. R. Math. Acad. Sci. Paris 335 (2002), no. 11, 895-898. https://doi.org/10.1016/S1631-073X(02)02572-4
  11. R. M. Gethner and J. H. Shapiro, Universal vectors for operators on spaces of holomorphic functions, Proc. Amer. Math. Soc. 100 (1987), no. 2, 281-288. https://doi.org/10.1090/S0002-9939-1987-0884467-4
  12. S. Grivaux, Hypercyclic operators, mixing operators, and the bounded steps problem, J. Operator Theory 54 (2005), no. 1, 147-168.
  13. K.-G. Grosse-Erdmann and A. Peris, Weakly mixing operators on topological vector spaces, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Math. RACSAM 104 (2010), no. 2, 413-426. https://doi.org/10.5052/RACSAM.2010.25
  14. K.-G. Grosse-Erdmann and A. Peris Manguillot, Linear Chaos, Universitext, Springer, London, 2011.
  15. C. Kitai, Invariant closed sets for linear operators, ProQuest LLC, Ann Arbor, MI, 1982.
  16. A. Manoussos, Coarse topological transitivity on open cones and coarsely J-class and D-class operators, J. Math. Anal. Appl. 413 (2014), no. 2, 715-726. https://doi.org/10.1016/j.jmaa.2013.12.038
  17. A. B. Nasseri, On the existence of J-class operators on Banach spaces, Proc. Amer. Math. Soc. 140 (2012), no. 10, 3549-3555. https://doi.org/10.1090/S0002-9939-2012-11200-6
  18. A. Peris and L. Saldivia, Syndetically hypercyclic operators, Integral Equations Operator Theory 51 (2005), no. 2, 275-281. https://doi.org/10.1007/s00020-003-1253-9
  19. H. Salas, A hypercyclic operator whose adjoint is also hypercyclic, Proc. Amer. Math. Soc. 112 (1991), no. 3, 765-770. https://doi.org/10.1090/S0002-9939-1991-1049848-8
  20. H. Salas, Banach spaces with separable duals support dual hypercyclic operators, Glasg. Math. J. 49 (2007), no. 2, 281-290. https://doi.org/10.1017/S0017089507003692
  21. B. Yousefi and H. Rezaei, Hypercyclic property of weighted composition operators, Proc. Amer. Math. Soc. 135 (2007), no. 10, 3263-3271. https://doi.org/10.1090/S0002-9939-07-08833-8