References
- S. I. Ansari, Hypercyclic and cyclic vectors, J. Funct. Anal. 128 (1995), no. 2, 374-383. https://doi.org/10.1006/jfan.1995.1036
- M. R. Azimi and V. Muller, A note on J-sets of linear operators, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Math. RACSAM 105 (2011), no. 2, 449-453.
- F. Bayart and Matheron, Dynamics of linear operators, Cambridge Tracts in Mathematics, 179, Cambridge University Press, Cambridge, 2009.
- N. P. Bhatia and G. P. Szego, Stability theory of dynamical systems, Die Grundlehren der mathematischen Wissenschaften, Band 161, Springer-Verlag, New York, 1970.
- G. D. Birkhoff, Surface transformations and their dynamical applications, Acta Math. 43 (1922), no. 1, 1-119. https://doi.org/10.1007/BF02401754
- P. S. Bourdon and N. S. Feldman, Somewhere dense orbits are everywhere dense, Indiana Univ. Math. J. 52 (2003), no. 3, 811-819.
- J.-C. Chen and S.-Y. Shaw, Topological mixing and hypercyclicity criterion for sequences of operators, Proc. Amer. Math. Soc. 134 (2006), no. 11, 3171-3179. https://doi.org/10.1090/S0002-9939-06-08308-0
- G. Costakis, D. Hadjiloucas, and A. Manoussos, On the minimal number of matrices which form a locally hypercyclic, non-hypercyclic tuple, J. Math. Anal. Appl. 365 (2010), no. 1, 229-237. https://doi.org/10.1016/j.jmaa.2009.10.020
- G. Costakis and A. Manoussos, J-class operators and hypercyclicity, J. Operator Theory 67 (2012), no. 1, 101-119.
- G. Costakis and A. Peris, Hypercyclic semigroups and somewhere dense orbits, C. R. Math. Acad. Sci. Paris 335 (2002), no. 11, 895-898. https://doi.org/10.1016/S1631-073X(02)02572-4
- R. M. Gethner and J. H. Shapiro, Universal vectors for operators on spaces of holomorphic functions, Proc. Amer. Math. Soc. 100 (1987), no. 2, 281-288. https://doi.org/10.1090/S0002-9939-1987-0884467-4
- S. Grivaux, Hypercyclic operators, mixing operators, and the bounded steps problem, J. Operator Theory 54 (2005), no. 1, 147-168.
- K.-G. Grosse-Erdmann and A. Peris, Weakly mixing operators on topological vector spaces, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Math. RACSAM 104 (2010), no. 2, 413-426. https://doi.org/10.5052/RACSAM.2010.25
- K.-G. Grosse-Erdmann and A. Peris Manguillot, Linear Chaos, Universitext, Springer, London, 2011.
- C. Kitai, Invariant closed sets for linear operators, ProQuest LLC, Ann Arbor, MI, 1982.
- A. Manoussos, Coarse topological transitivity on open cones and coarsely J-class and D-class operators, J. Math. Anal. Appl. 413 (2014), no. 2, 715-726. https://doi.org/10.1016/j.jmaa.2013.12.038
- A. B. Nasseri, On the existence of J-class operators on Banach spaces, Proc. Amer. Math. Soc. 140 (2012), no. 10, 3549-3555. https://doi.org/10.1090/S0002-9939-2012-11200-6
- A. Peris and L. Saldivia, Syndetically hypercyclic operators, Integral Equations Operator Theory 51 (2005), no. 2, 275-281. https://doi.org/10.1007/s00020-003-1253-9
- H. Salas, A hypercyclic operator whose adjoint is also hypercyclic, Proc. Amer. Math. Soc. 112 (1991), no. 3, 765-770. https://doi.org/10.1090/S0002-9939-1991-1049848-8
- H. Salas, Banach spaces with separable duals support dual hypercyclic operators, Glasg. Math. J. 49 (2007), no. 2, 281-290. https://doi.org/10.1017/S0017089507003692
- B. Yousefi and H. Rezaei, Hypercyclic property of weighted composition operators, Proc. Amer. Math. Soc. 135 (2007), no. 10, 3263-3271. https://doi.org/10.1090/S0002-9939-07-08833-8