References
- Y. Berkovich, Finite solvable groups in which only two nonlinear irreducible characters have equal degrees, J. Algebra 184 (1996), no. 2, 584-603. https://doi.org/10.1006/jabr.1996.0277
- Y. Berkovich and L. Kazarin, Finite nonsolvable groups in which only two nonlinear irreducible characters have equal degrees, J. Algebra 184 (1996), no. 2, 538-560. https://doi.org/10.1006/jabr.1996.0273
- Ya. G. Berkovich and E. M. Zhmud, Characters of Finite Groups. Part 1, translated from the Russian manuscript by P. Shumyatsky [P. V. Shumyatskii] and V. Zobina, Translations of Mathematical Monographs, 172, American Mathematical Society, Providence, RI, 1998.
- M. Bianchi, A. G. B. Mauri, M. Herzog, G. Qian, and W. Shi, Characterization of non-nilpotent groups with two irreducible character degrees, J. Algebra 284 (2005), no. 1, 326-332. https://doi.org/10.1016/j.jalgebra.2004.09.028
- C. M. Boner and M. B. Ward, Finite groups with exactly two conjugacy classes of the same order, Rocky Mountain J. Math. 31 (2001), no. 2, 401-416. https://doi.org/10.1216/rmjm/1020171567
- D. Chillag and S. Dolfi, Semi-rational solvable groups, J. Group Theory 13 (2010), no. 4, 535-548. https://doi.org/10.1515/JGT.2010.004
- M. R. Darafsheh, Character theory of finite groups: problems and conjectures, In The first IPM-Isfahan workshop on Group Theory, 2015.
- R. Dark and C. M. Scoppola, On Camina groups of prime power order, J. Algebra 181 (1996), no. 3, 787-802. https://doi.org/10.1006/jabr.1996.0146
- L. Dornhoff, Group Representation Theory. Part A, Marcel Dekker, Inc., New York, 1971.
- The GAP group, GAP-Groups, Algorithms, and Programming, Version 4.7.4, http://www.gap-system.org, 2014.
- M. Herzog and J. Schonheim, On groups of odd order with exactly two non-central conjugacy classes of each size, Arch. Math. (Basel) 86 (2006), no. 1, 7-10. https://doi.org/10.1007/s00013-005-1455-2
- G. Higman, Finite groups in which every element has prime power order, J. London Math. Soc. 32 (1957), 335-342. https://doi.org/10.1112/jlms/s1-32.3.335
- I. M. Isaacs, Character Theory of Finite Groups, Academic Press, New York, 1976.
-
R. Knorr, W. Lempken, and B. Thielcke, The
$S_3$ -conjecture for solvable groups, Israel J. Math. 91 (1995), no. 1-3, 61-76. https://doi.org/10.1007/BF02761639 - M. L. Lewis, The vanishing-off subgroup, J. Algebra 321 (2009), no. 4, 1313-1325. https://doi.org/10.1016/j.jalgebra.2008.11.024
- J. P. Zhang, Finite groups with many conjugate elements, J. Algebra 170 (1994), no. 2, 608-624. https://doi.org/10.1006/jabr.1994.1356
- A. Kh. Zhurtov, Regular automorphisms of order 3 and Frobenius pairs, Siberian Math. J. 41 (2000), no. 2, 268-275; translated from Sibirsk. Mat. Zh. 41 (2000), no. 2, 329-338, ii. https://doi.org/10.1007/BF02674596