DOI QR코드

DOI QR Code

GENERALIZED DERIVATIONS WITH CENTRALIZING CONDITIONS IN PRIME RINGS

  • Received : 2018.01.11
  • Accepted : 2018.09.21
  • Published : 2019.01.31

Abstract

Let R be a noncommutative prime ring of characteristic different from 2, U the Utumi quotient ring of R, C the extended centroid of R and f($x_1,{\ldots},x_n$) a noncentral multilinear polynomial over C in n noncommuting variables. Denote by f(R) the set of all the evaluations of f($x_1,{\ldots},x_n$) on R. If d is a nonzero derivation of R and G a nonzero generalized derivation of R such that $$d(G(u)u){\in}Z(R)$$ for all $u{\in}f(R)$, then $f(x_1,{\ldots},x_n)^2$ is central-valued on R and there exists $b{\in}U$ such that G(x) = bx for all $x{\in}R$ with $d(b){\in}C$. As an application of this result, we investigate the commutator $[F(u)u,G(v)v]{\in}Z(R)$ for all $u,v{\in}f(R)$, where F and G are two nonzero generalized derivations of R.

Keywords

References

  1. A. Ali, V. De Filippis, and F. Shujat, Commuting values of generalized derivations on multilinear polynomials, Comm. Algebra 42 (2014), no. 9, 3699-3707. https://doi.org/10.1080/00927872.2013.790395
  2. C.-M. Chang and T.-K. Lee, Annihilators of power values of derivations in prime rings, Comm. Algebra 26 (1998), no. 7, 2091-2113. https://doi.org/10.1080/00927879808826263
  3. C.-L. Chuang, The additive subgroup generated by a polynomial, Israel J. Math. 59 (1987), no. 1, 98-106. https://doi.org/10.1007/BF02779669
  4. C.-L. Chuang, GPIs having coefficients in Utumi quotient rings, Proc. Amer. Math. Soc. 103 (1988), no. 3, 723-728. https://doi.org/10.1090/S0002-9939-1988-0947646-4
  5. V. De Filippis and B. Dhara, Cocentralizing generalized derivations on multilinear polynomial on right ideals of prime rings, Demonstr. Math. 47 (2014), no. 1, 22-36. https://doi.org/10.2478/dema-2014-0002
  6. V. De Filippis and O. M. Di Vincenzo, Vanishing derivations and centralizers of generalized derivations on multilinear polynomials, Comm. Algebra 40 (2012), no. 6, 1918- 1932. https://doi.org/10.1080/00927872.2011.553859
  7. C . Demir and N. Argac, Prime rings with generalized derivations on right ideals, Algebra Colloq. 18 (2011), Special Issue no. 1, 987-998. https://doi.org/10.1142/S1005386711000861
  8. B. Dhara, M. A. Raza, and N. Ur Rehman, Commutator identity involving generalized derivations on multilinear polynomials, Ann. Univ. Ferrara Sez. VII Sci. Mat. 62 (2016), no. 2, 205-216. https://doi.org/10.1007/s11565-016-0255-x
  9. V. K. Harcenko, Differential identities of prime rings, Algebra i Logika 17 (1978), no. 2, 220-238, 242-243.
  10. L. Karini and V. de Filippis, Centralizers of generalized derivations on multilinear polynomials in prime rings, Sib. Math. J. 53 (2012), no. 6, 1051-1060; translated from Sibirsk. Mat. Zh. 53 (2012), no. 6, 1310-1320. https://doi.org/10.1134/S0037446612060092
  11. T. K. Lee, Semiprime rings with differential identities, Bull. Inst. Math. Acad. Sinica 20 (1992), no. 1, 27-38.
  12. R. K. Sharma, B. Dhara, and S. K. Tiwari, Left annihilator of commutator identity with generalized derivations and multilinear polynomials in prime rings, Comm. Algebra 44 (2016), no. 8, 3611-3621. https://doi.org/10.1080/00927872.2015.1085996
  13. T.-L. Wong, Derivations cocentralizing multilinear polynomials, Taiwanese J. Math. 1 (1997), no. 1, 31-37. https://doi.org/10.11650/twjm/1500404923