DOI QR코드

DOI QR Code

A Study on Manufacturing Method of Standard Void Specimens for Non-destructive Testing in RFI Process and Effect of Void on Mechanical Properties

RFI 공정 부품 비파괴검사용 표준 기공률 시편 제조 방법 및 기공률에 따른 기계적 물성 영향에 대한 연구

  • Han, Seong-Hyeon (Composite Research Division, Korea Institute of Materials Science) ;
  • Lee, Jung-Wan (Composite Research Division, Korea Institute of Materials Science) ;
  • Kim, Jung-Soo (Composite Research Division, Korea Institute of Materials Science) ;
  • Kim, Young-Min (Composite Research Division, Korea Institute of Materials Science) ;
  • Kim, Wee-Dae (Department of Aerospace Engineering, Punsan National University) ;
  • Um, Moon-Kwang (Composite Research Division, Korea Institute of Materials Science)
  • Received : 2019.11.07
  • Accepted : 2019.12.30
  • Published : 2019.12.31

Abstract

The RFI process is an OoA process that fiber mats and resin films are laminated and cured in a vacuum bag. In case that resin film is insufficient to fill empty space in fibers, it makes void defect in composites and this void decrease mechanical properties of the composites. For this reason, non-destructive testing is usually used to evaluate void of manufactured composites. So, in this study, a manufacturing method of standard void specimens, which are able to be used as references in non-destructive testing, was proposed by controlling resin film thickness in the RFI process. Also, a fiber compaction test was proposed as a method to set the resin film thicknesses depending on target voids of manufacturing panels. The target void panels of 0%, 2%, and 4% were made by the proposed methods, and signal attenuation depending on void was measured by non-destructive testing and image analysis. In addition, voids of specimens for tensile, in-plane, short beam and compressive tests were estimated by signal attenuation, and mechanical properties were evaluated depending on the voids.

RFI 공정은 진공백 내부에 섬유 매트와 수지 필름을 적층하여 성형하는 OoA 공정이다. 외부에서 따로 주입되는 수지가 없기 때문에 수지 필름의 양이 섬유가 필요로 하는 양보다 적은 경우 복합재 내부에 기공 결함이 발생하며 기계적 물성이 저하된다. 이러한 이유로 제작한 복합재를 실용화하기 위해서 비파괴검사를 이용한 기공예측이 필수적으로 요구된다. 따라서 본 연구에서는 RFI 공정에서 비파괴검사 시 기준으로 사용할 수 있는 표준 기공률 시편을 제조하는 방법을 제시하였다. 표준 기공률 시편 제작 방법으로 수지 필름 두께를 조절하는 방법을 사용하였으며, 목표 기공률별 수지 필름 두께를 설정하기 위한 방법으로 섬유 압착 실험을 제시하였다. 수지 필름 두께 조절을 통하여 0%, 2%, 4%의 목표 기공률 패널을 제작했고 비파괴시험과 기공률 측정을 통하여 기공률에 따른 비파괴검사 신호 감쇠를 측정했다. 또한 인장, 면내전단, 숏빔, 압축 시편의 신호 감쇠를 통하여 기공률을 추정하였고, 기공률에 따른 기계적 물성을 평가하였다.

Keywords

References

  1. Lee, D.S., Fahey, D.W., Forster, P.M., Newton, P.J., Wit, R.C.N., Lim, L.L., Owen, B., and Sausen, R., "Aviation and Global Climate Change in the 21st Century", Journal of Atmospheric Environment, Vol. 43, No. 22-23, 2009, pp. 3520-3537. https://doi.org/10.1016/j.atmosenv.2009.04.024
  2. Soutis, C., "Fibre Reinforced Composites in Aircraft Construction", Journal of Progress in Aerospace Sciences, Vol. 41, No. 2, 2005, pp. 143-151. https://doi.org/10.1016/j.paerosci.2005.02.004
  3. Botelho, E.C., Silva, R.A., Pardini, L.C., and Rezende, M.C., "A Review on the Development and Properties of Continuous Fiber/epoxy/aluminum Hybrid Composites for Aircraft Structures", Materials Research, Vol. 9, No. 3, 2006, pp. 247-256. https://doi.org/10.1590/S1516-14392006000300002
  4. Dexter, H.B., "Development of Textile Reinforced Composites for Aircraft Structures," Proceeding of the 4th International Symposium for Textile Composites, Kyoto, Japan, Oct. 1998, pp. 1-8.
  5. Soutis, C. Introduction: Engineering Requirements for Aerospace Composite Materials, Polymer Composites in the Aerospace Industry, Manchester, UK, 2014, pp. 1-18.
  6. Yoon, S.H., Lee, J.W., Kim, J.S., Kim, W.D., and Um, M.K., "A Study on the Proper Resin Film Thickness in RFI Process", Composites Research, Vol. 31, No. 1, 2018, pp. 23-29. https://doi.org/10.7234/composres.2018.31.1.023
  7. Garschke, C., Weimer, C., Parlevliet, P.P., and Fox, B.L., "Out-of-Autoclave Cure Cycle Study of a Resin Film Infusion Process using in Situ Process Monitoring", Journal of Composites Part A: Applied Science and Manufacturing, Vol. 43, No. 6, 2012, pp 935-944. https://doi.org/10.1016/j.compositesa.2012.01.003
  8. Qi, B., Raju, J., Kruckenberg, T., and Stanning, R., "A Resin Film Infusion Process for Manufacturing of Advanced Composite Structures", Journal of Composite Structures, Vol. 47, No. 1-4, 1999, pp. 471-476. https://doi.org/10.1016/S0263-8223(00)00025-8
  9. Liu, L., Zhang, B.M., Wang, D.F., and Wu, Z.J., "Effects of Cure Cycles on Void Content and Mechanical Properties of Composite Laminates", Journal of Composite Structures, Vol. 73, No. 3, 2006, pp. 303-309. https://doi.org/10.1016/j.compstruct.2005.02.001
  10. Almeida, S.F.M., and Neto, Z.S.N., "Effects of Void Content on the Strength of Composite Laminate", Journal of Composite Structures, Vol. 28, No. 2, pp. 139-148. https://doi.org/10.1016/0263-8223(94)90044-2
  11. Stone, D.E.W., and Clarke, B., "Ultrasonic Attenuation as a Measure of Void Content in Carbon-Fibre Reinforced Plastics", Journal of Non-Destructive Testing, Vol. 8, No. 3, 1975, pp. 137-145. https://doi.org/10.1016/0029-1021(75)90023-7
  12. Zhu, H., Wu, B., Li, D., Zhang, D., and Chen, Y., "Influence of Voids on the Tensile Performance of Carbon/epoxy Fabric Laminates", Journal of Materials Science and Technology, Vol. 27, No. 1, 2011, pp. 69-73. https://doi.org/10.1016/S1005-0302(11)60028-5
  13. Karabutov, A.A., and Podymova, N.B., "Quantitative Analysis of the Influence of Voids and Delaminations on Acoustic Attenuation in CFRP Composites by the Laser-Ultrasonic Spectroscopy Method", Journal of Composites Part B: Engineering, Vol. 56, 2014, pp. 238-244. https://doi.org/10.1016/j.compositesb.2013.08.040
  14. Schwartz, M.M., Composite Materials Handbook, McGraw-Hill, New-York, 1984.