DOI QR코드

DOI QR Code

Evaluation of Nozzle's Combustion Instability Suppression Effect by Linearized Euler Equation

선형 오일러 방정식을 이용한 노즐의 연소불안정 감쇠 효과 평가

  • Kim, Junseong (Satellite System Team, Korea Aerospace Industries) ;
  • Moon, Heejang (School of Aerospace and Mechanical Engineering, Korea Aerospace University)
  • Received : 2019.09.05
  • Accepted : 2019.10.16
  • Published : 2019.12.01

Abstract

The wave motion inside the nozzle is known as one of the major damping elements of the rocket's combustion instability by it's aeroacoustic effects that result from the flow passage through the nozzle throat. These effects can be quantitatively evaluated by the nozzle admittance. In this study, one-dimensional linearized Euler equation was adopted to calculate the nozzle admittance, and trend analysis was performed depending on the nozzle's main design variables. As a result, when nozzle converging part shortens, it is verified that the frequency dependency of the nozzle admittance is decreased due to the widened frequency range with lowered longitudinal nozzle admittance. Also, admittance estimation using the short nozzle theory is not appropriate when the first tangential mode of the pressure perturbation arises.

노즐 내 파동은 노즐목을 빠져나가는 유동의 공력음향학적인 효과로 인해 연소불안정을 감쇠시키는 주요 요소 중 하나로 알려져 있다. 이와 같은 효과는 노즐 어드미턴스라는 지표를 통해 정량적으로 평가가 가능하다. 본 연구에서는 현재까지 로켓 연소불안정 억제에 가장 효과적인 노즐감쇠(nozzle damping)와 연계된 노즐 어드미턴스를 구하는 여러 기법을 소개한다. 이중, 가장 널리 알려진 1차원 선형 오일러 방정식을 도입하여 노즐의 주 설계 변수에 따른 노즐 어드미턴스의 경향을 분석하였다. 분석 결과, 노즐 수축부 길이가 짧아질수록 축방향 노즐 어드미턴스의 값이 낮게 나타나는 주파수 영역대가 확장되므로 짧은 노즐일수록 주파수 의존성을 줄인다는 기존 이론을 검증하였다. 또한, 짧은 노즐 이론을 통한 어드미턴스 예측은 1차 접선방향 압력 섭동에는 적합하지 않음을 알 수 있었다.

Keywords

References

  1. Culick, F.E.C. "Unsteady Motions in Combustion Chambers for Propulsion Systems, "North Atlantic Treaty Organization, AG-AVT-039, 2006.
  2. Campa, G. and Juniper, M.P., "Obtaining bifurcation diagrams with a thermoacoustic network model," In ASME Turbo Expo 2012: Turbine Technical Conference and Exposition, American Society of Mechanical Engineers, pp. 167-177. 2012.
  3. Larmarque, N. and Poinsot, T., “Boundary Conditions for Acoustic Eigenmode Computations in Gas Turbine Combustion Chambers,” AIAA Journal, Vol. 46, No. 9, pp. 2282-2292, 2008. https://doi.org/10.2514/1.35388
  4. Tsien, H.S., "The Transfer Functions of Rocket Nozzles," American Rocket Society Journal, Vol. 22, pp. 139-162, 1959. https://doi.org/10.2514/8.4448
  5. Crocco, L. and Sirignano, W.A., "Behaviour of Supercritical Nozzles under Three-Dimensional Oscillatory Conditions," North Atlantic Treaty Organization, AGARD-AG-117, 1967.
  6. Buffum, F.G., Dehority, G.L., Slates, R.O., and Price, E.W., “Acoustic Attenuation Experiments on Subscale Cold-Flow Rocket Motors,” AIAA Journal, Vol. 5, No. 2, pp. 272-280, 1967. https://doi.org/10.2514/3.3952
  7. Bell, W.A., "Experimental Determination of Three-Dimensional Liquid Rocket Nozzle Admittances," Ph.D. thesis, Georgia Inst. of Technology, 1972.
  8. Bell, W.A., Daniel, B.R., and Zinn, B.T., “Experimental and Theoretical Determination of the Admittances of a Family of Nozzles Subjected to Axial Instabilities,” Journal of Sound and Vibration, Vol. 30, No. 2, pp. 179-190, 1973. https://doi.org/10.1016/S0022-460X(73)80112-9
  9. Zinn, B.T., Bell, W.A., Daniel, B.R., and Smith Jr,A.J., “Experimental Determination of Three-Dimensional Liquid Rocket Nozzle Admittances,” AIAA Journal, Vol. 11, No. 3, pp. 267-272, 1973. https://doi.org/10.2514/3.6741
  10. Sigman R.K. and Zinn, B.T., “A Finite Element Approach for Predicting Nozzle Admittances,” Journal of Sound and Vibration, Vol. 88, No. 1, pp. 117-131, 1983. https://doi.org/10.1016/0022-460X(83)90683-1
  11. Pieringer, J.E., "Simulation selbsterregter Verbrennungsschwingungen Raktenschubkammern im Zeitbereich," Ph.D thesis, Technische Universitat Munchen, 2008.
  12. Pieringer, J. and Sattelmayer, T., “Simulation of Combustion Instabilities in Liquid Rocket Engines with Acoustic Perturbation Equations,” Journal of Propulsion and Power, Vol. 25, No. 5, pp. 1020-1031, 2009. https://doi.org/10.2514/1.38782
  13. Morgenweck, D., Pieringer, J., and Sattelmayer, T., "Numerical Determination of Nozzle Admittances in Rocket Engines," New Results in Numerical and Experimental Fluid Mechanics VII, Notes on Numerical Fluid Mechanics and Multidisciplinary Design, Vol. 112, pp. 579-586, 2010.
  14. Kathan, R., Morgenweck, D., Kaess R., and Sattelmayer T., "Validation of The Computation of Rocket Nozzle Admittances with Linearized Euler Equations," Progress in Propulsion Physics, Vol. 4, pp. 135-148, 2013.
  15. Schulze, M., Gikadi., J., and Sattelmayer, T., "Acoustic Admittance Prediction of two Nozzle Designs of Differenct Lencth using Frequency Domain Simulations, "5th European Conference for Aeronautics and Space Sciences, 2013.
  16. Zinn, B.T., "Longitudinal Mode Acoustic Losses in Short Nozzles," Journal of Sound and Vibration, Vol. 22, No. 1, pp. 93-105, 1972. https://doi.org/10.1016/0022-460X(72)90847-4
  17. Culick, F.E.C. and Dehority, G.L., “Analysis of Axial Acoustic Waves in a Cold-Flow Rocket,” Journal of Spacecraft and Rockets, Vol. 6, No. 5, pp. 591-595, 1969. https://doi.org/10.2514/3.29618