• Title/Summary/Keyword: Linearized Euler Equation

Search Result 9, Processing Time 0.022 seconds

Simulation of Trailing Edge Scattering Using Linearized Euler Equations with Source terms (CFD/CAA Hybrid 기법을 이용한 뒷전에서 음향파의 산란모사)

  • Park, Yong-Hwan;Bin, Jong-Hoon;Cheong, Cheol-Ung;Lee, Soo-Gab
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.7
    • /
    • pp.18-25
    • /
    • 2005
  • In this study, the main focus is the simulation of acoustic wave scattering in trailing edge and the analysis of the generation mechanism of instability wave by the interaction of trailing edge, shear flow and initial disturbance. The numerical algorithm is based on CFD/CAA hybrid method with high-order computational aeroacoustic method. It is found that steady mean flow gradient terms play a crucial role on the generation of instability wave through the comparison of simulations of Simple Linearized Euler Equation and Full Linearized Euler Equation. Through the comparison with the results of Full Navier-Stokes Equation, it is reasonable and efficient to use the Full Linearized Euler Equation in the initial generation mechanism of the instability wave near the trailing edge.

COMPUTATION OF SOUND SCATTERING IN 3D COMPLEX GEOMETRY BY BRINKMAN PENALIZATION METHOD (Brinkman Penalization Method를 통한 복잡한 3D 형상 주위의 음향 전파 연구)

  • Lee, S.H.;Lee, J.B.;Kim, J.U.;Moon, Y.J.
    • Journal of computational fluids engineering
    • /
    • v.17 no.4
    • /
    • pp.103-109
    • /
    • 2012
  • Sound scattering in 3D complex geometry is difficult to model with body-fitted grid. Thus Brinkman Penalization method is used to compute sound scattering in 3D complex geometry. Sound propagation of monitor/TV is studied. The sound field for monitor/TV is simulated by applying Brinkman Penalization method to Linearized Euler Equation. Solid Structure and ambient air are represented as penalty terms in Linearized Euler Equation.

Evaluation of Nozzle's Combustion Instability Suppression Effect by Linearized Euler Equation (선형 오일러 방정식을 이용한 노즐의 연소불안정 감쇠 효과 평가)

  • Kim, Junseong;Moon, Heejang
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.6
    • /
    • pp.1-10
    • /
    • 2019
  • The wave motion inside the nozzle is known as one of the major damping elements of the rocket's combustion instability by it's aeroacoustic effects that result from the flow passage through the nozzle throat. These effects can be quantitatively evaluated by the nozzle admittance. In this study, one-dimensional linearized Euler equation was adopted to calculate the nozzle admittance, and trend analysis was performed depending on the nozzle's main design variables. As a result, when nozzle converging part shortens, it is verified that the frequency dependency of the nozzle admittance is decreased due to the widened frequency range with lowered longitudinal nozzle admittance. Also, admittance estimation using the short nozzle theory is not appropriate when the first tangential mode of the pressure perturbation arises.

Electrooptic Response of Reflective Liquid Crystal Cell

  • Lee, Geon-Joon;C. H. Oh;Lee, Y. P.;T. K. Lim
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.S1
    • /
    • pp.33-35
    • /
    • 2003
  • The electrooptic properties of the reflected light in a reflective mode, $45^{\circ}C$twisted nematic liquid crystal (TNLC) cell were investigated in the voltage regions near and away from the Freedericksz transition threshold. The measured reflectivity away from the threshold voltage ($V_th$) could not be described by the model which assurnes a constant tilt angle as well as a linearized distribution of twist angle across the cell, although the data are well fitted near $V_th$. We found that in the voltage region away from $V_th$, the model considering the distributions of the tilt angle and the twist angle should be applied for the calculation of the reflectivity. The director-axis distributions were obtained from the numerical integration of the Euler-Lagrange equation.

Slat Noise Source Modeling of Multi-element Airfoil in High-lift Configuration

  • Hwang, Seung Tae;Han, Chang Kyun;Im, Yong Taek;Kim, Jong Rok;Bae, Youngmin;Moon, Young J.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.2
    • /
    • pp.197-205
    • /
    • 2017
  • We investigate the slat noise generation mechanism by using large-eddy simulation (LES) and simple source modeling based on linearized Euler equations. An incompressible LES of an MD 30P30N three-element airfoil in the high-lift configuration is conducted at $Re_c=1.7{\times}10^6$. Using the total derivative of the hydrodynamic pressure (DP/Dt) acquired from the incompressible LES, representative noise sources in the slat cove region are characterized in terms of simple sources such as frequency-specific monopoles and dipoles. Acoustic radiation around the 30P30N multi-element airfoil is effectively computed using the Brinkman penalization method incorporated with the linearized Euler equation. The directivity pattern of $p^{\prime}_{rms}$ at $r=20c_{slat}$ in the multiple sources is closely compared to that obtained by the application of the LES/Ffowcs-Williams and Hawking's methods to the entire flow field. The power spectrum of p' at ${\theta}=290^{\circ}$ is in good agreement with the data reported in BANC-III, especially the broadband part of the spectrum with a decaying slope ${\propto}f^{-3}$.

The influence of the fluid flow velocity and direction on the wave dispersion in the initially inhomogeneously stressed hollow cylinder containing this fluid

  • Surkay D. Akbarov;Jamila N. Imamaliyeva;Reyhan S. Akbarli
    • Coupled systems mechanics
    • /
    • v.13 no.3
    • /
    • pp.247-275
    • /
    • 2024
  • The paper studies the influence of the fluid flow velocity and flow direction in the initial state on the dispersion of the axisymmetric waves propagating in the inhomogeneously pre-stressed hollow cylinder containing this fluid. The corresponding eigenvalue problem is formulated within the scope of the three-dimensional linearized theory of elastic waves in bodies with initial stresses, and with linearized Euler equations for the inviscid compressible fluid. The discrete-analytical solution method is employed, and analytical expressions of the sought values are derived from the solution to the corresponding field equations by employing the discrete-analytical method. The dispersion equation is obtained using these expressions and boundary and related compatibility conditions. Numerical results related to the action of the fluid flow velocity and flow direction on the influence of the inhomogeneous initial stresses on the dispersion curves in the zeroth and first modes are presented and discussed. As a result of the analyses of the numerical results, it is established how the fluid flow velocity and flow direction act on the magnitude of the influence of the initial inhomogeneous stresses on the wave propagation velocity in the cylinder containing the fluid.

Parametric study of the wave dispersion in the hydro-elastic system consisting of an inhomogeneously prestressed hollow cylinder containing compressible inviscid fluid

  • Surkay D. Akbarov;Gurbaneli J. Veliyev
    • Coupled systems mechanics
    • /
    • v.12 no.1
    • /
    • pp.41-68
    • /
    • 2023
  • The present work is concerned with the study of the influence of inhomogeneous initial stresses in a hollow cylinder containing a compressible inviscid fluid on the propagation of axisymmetric longitudinal waves propagating in this cylinder. The study is carried out using the so-called three-dimensional linearized theory of elastic waves in bodies with initial stresses to describe the motion of the cylinder and using the linearized Euler equations to describe the flow of the compressible inviscid fluid. It is assumed that the inhomogeneous initial stresses in the cylinder are caused by the internal pressure of the fluid. To solve the corresponding eigenvalue problem, the discrete-analytic solution method is applied and the corresponding dispersion equation is obtained, which is solved numerically, after which the corresponding dispersion curves are constructed and analyzed. To obtain these dispersion curves, parameters characterizing the magnitude of the internal pressure, the ratio of the sound velocities in the cylinder material and in the fluid, and the ratio of the material densities of the fluid and the cylinder are introduced. Based on these parameters, the influence of the inhomogeneous initial stresses in the cylinder on the dispersion of the above-mentioned waves in the considered hydro-elastic system is investigated. Moreover, based on these results, appropriate conclusions about this influence are drawn. In particular, it is found that the character of the influence depends on the wavelength. Accordingly, the inhomogeneous initial stresses before (after) a certain value of the wavelength lead to a decrease (increase) of the wave propagation velocity in the zeroth and first modes.

Balancing Control Algorithm for a Single-Wheeled Mobile Robot (외륜 이동로봇의 균형제어 알고리즘)

  • Lee, Hyun Tak;Park, Hee Jae
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.1
    • /
    • pp.144-149
    • /
    • 2017
  • There have been lots of interest on service and entertainment robots. To ensure that robots work in harmony with humans, their stability and compactness are some of the key issues. Obviously, robots with fewer wheels occupy a smaller floor area compared to those with more wheels. In addition, robots with fewer wheels, whose posture stabilities are maintained by feedback control, are stable even under larger accelerations and/or higher locations of the center of mass. To facilitate controller design, it is assumed that both pitch and roll dynamics are decoupled. The dynamic equations of motion for the proposed robot are derived from the Euler-Lagrange equation. To obtain the optimal balancing control law, linear quadratic regulator control methods are applied to the linearized dynamic equations. Simulation and experimental results verify the effectiveness and performance of the proposed balancing control algorithm for a single-wheeled mobile robot.

An Experimental Study on Nozzle Damping Characteristics for Combustion Instability Suppression (노즐감쇠 실험을 통한 연소 불안정 억제 연구)

  • Ryoo, Seunghyun;Kim, Junseong;Kim, Hakchul;Moon, Heejang;Lee, Dohyung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.724-729
    • /
    • 2017
  • The interaction between the flow of the nozzle and the acoustic motion in the combustion chamber acts as an important factor in suppressing combustion instability where nozzle damping effect can be evaluated by nozzle admittance. In this study, Modified Impedance Tube experiment is implemented to predict the acoustic nozzle damping effect. The experimental admittances are compared to numerical admittances values which are calculated from one-dimensional linearized Euler equation of Crocco's theory. As a result, it was possible to identify qualitatively the tendency between increasing and decreasing parts. Also, Efficient frequency bands of nozzle attenuation can be predicted.

  • PDF