DOI QR코드

DOI QR Code

EEG Recording Method for Quantitative Analysis

정량적 분석을 위한 뇌파 측정 방법

  • Heo, Jaeseok (The Graduate School, Yonsei University Graduate Program in Cognitive Science) ;
  • Chung, Kyungmi (Institute of Behavioral Science in Medicine, Yonsei University College of Medicine)
  • 허재석 (연세대학교 일반대학원 인지과학협동과정) ;
  • 정경미 (연세대학교 의과대학 의학행동과학연구소)
  • Received : 2019.08.26
  • Accepted : 2019.10.17
  • Published : 2019.12.31

Abstract

Quantitative electroencephalography (QEEG) has been widely used in research and clinical fields. QEEG has been widely used to objectively document cerebral changes for the purpose of identifying the electrophysiological biomarkers across various clinical symptoms and for the stimulation of specific cortical regions associated with cognitive function. In electroencephalography (EEG), the difference in quantitative and qualitative analyses is discriminated not by its measurement methods and relevant clinical or research environments, but by its analysis methods. When performing a qualitative analysis, it is possible for a medical technologist or experienced researchers to read the EEG waveforms to exclude artifacts. However, the quantitative analysis is still based on mathematical modeling, and all EEG data are included for the analysis, leading the results to be affected by unexpected artifacts. In the hospital setting, the case that the medical technologists in charge of the EEG test perform academic research has been little reported, compared to other clinical physiological measurement-based research. This is because there are few laboratories specialized in clinical physiological research. In this respect, this study is expected to be utilized as a basic reference material for medical technologists, students, and academic researchers, all of whom would like to conduct a quantitative analysis.

정량적 뇌파는 연구와 임상적 분야에서 활발하게 이용되어 다양한 임상적 증상과 인지기능의 자극 및 과제에 따른 대뇌의 생물학적인 바이오 마커를 규명하는 등 대뇌의 변화를 객관적으로 증명하는데 지속적으로 사용되고 있다. 뇌파에서 정량적 분석과 정성적 분석은 분석하는 방법이 다르기 때문에 측정 방법과 환경이 비슷하지만 한편으론 다르다. 정성적 분석은 뇌파를 판독하는 사람이 잡파를 제외시키고 볼 수 있지만 정량적 분석은 수학적 모델링을 기반으로 데이터의 모든 것을 포함하여 분석을 실시하고 있기 때문에 잡파가 결과에 영향을 준다. 병원에서 임상생리학적 검사인 뇌파를 담당하는 임상병리사들이 뇌파를 이용한 연구는 다른 분야에 비해서 아주 드물다. 이러한 현상은 임상검사과학 분야 중에 임상생리학적 검사에서 두드러지게 나타난다. 왜냐하면 현재 대학에서 임상생리학을 연구하는 실험실이 많지 않기 때문이다. 본 저자의 목적은 정량적 분석을 하고자 하는 임상병리사, 대학원생, 연구자들이 쉽게 접근하여 앞으로 뇌파의 많은 연구가 이루어 질 수 있는 기초자료로 활용되기를 기대하고, 앞으로 많은 대학에서 임상생리학 실험실이 생겨 많은 연구들이 이루어져 좋은 논문들이 많이 나오기를 기대해 본다.

Keywords

References

  1. Eun HJ. Basics of electroencephalography for neuropsychiatrist. J Koran Neuropsychiatr Assoc. 2019;58:76-104. https://doi.org/10.4306/jknpa.2019.58.2.76
  2. Lee GW. Clinical application of VEP. J Korean Soc Clin Neurophysiol. 2001;3:94-98.
  3. Lee GW, Park KS. Application of neurophysiological studies in clinical neurology. J Korean Soc Clin Neurophysiol. 1999;1:1-9.
  4. Hong SB, Jung KY. Basic electrophysiology of the electroencephalography. J Korean Neurol Assoc. 2003;21:225.
  5. Schimer DS. Lopes da Silva FH. Niedermeyer's electroencephalography: basic principles, clinical applications, and related fields. 7th ed. New York: USA; Oxford University. 2017.
  6. Kramer MA. An introduction to field analysis techniques: the power spectrum and coherence [Internet]. Boston: Boston University Arts & Sciences; 2013 [cited 2019 Oct10]. Available from: http://math.bu.edu/people/mak/sfn-2013/sfn_tutorial.pdf.
  7. McGinty R, Costello DJ, Kinirons P, McNamara B. Diagnostic yield of routine EEG in adults with active epilepsy. Ir Med J. 2019;112:851.
  8. Baumgartner C, Koren JP, Rothmayer M. Automatic computer-based detection of epileptic seizures. Front Neurol. 2018;9:639. https://doi.org/10.3389/fneur.2018.00639
  9. Issa MF, Tuboly G, Kozmann G, Juhasz Z. Automatic ECG artefact removal from EEG signals. Meas Sci Rev. 2019;19:101-108. https://doi.org/10.2478/msr-2019-0016
  10. Liang SF, Kuo CE, Hu YH, Pan YH, Wang YH. Automatic stage scoring of single-channel sleep EEG by using multiscale entropy and autoregressive models. IEEE T Instrum Meas. 2012;61:1649-1657. https://doi.org/10.1109/TIM.2012.2187242
  11. Gloss D, Varma JK, Pringsheim T, Nuwer MR. Practice advisory: the utility of EEG theta/beta power ratio in ADHD diagnosis: report of the guideline development, dissemination, and implementation subcommittee of the American Academy of Neurology. Neurology. 2016;87:2375-2379. https://doi.org/10.1212/WNL.0000000000003265
  12. Snyder SM, Rugino TA, Hornig M, Stein MA. Integration of an EEG biomarker with a clinician's ADHD evaluation. Brain Behav. 2015;5:E00330.
  13. Price J, Budzynski T. Anxiety, Introduction to quantitative EEG and neurofeedback: advanced theory and applications. 2nd ed. Cambridge: Academic Press; 2009. p453-470.
  14. Lenartowicz A, Loo SK. Use of EEG to diagnose ADHD. Curr Psychiatry Rep. 2014;16:498. https://doi.org/10.1007/s11920-014-0498-0
  15. Thibodeau R, Jorgensen RS, Kim S. Depression, anxiety, and resting frontal EEG asymmetry: a meta-analytic review. J Abonorm Psychol. 2006;115:715. https://doi.org/10.1037/0021-843X.115.4.715
  16. Alkawadri R. Brain computer interface (BCI) applications in mapping of epileptic brain networks based on intracranial-EEG. Front Neurol. 2019;13:191. https://doi.org/10.3389/fnins.2019.00191
  17. Abraham A, Dutta P, editors. Emerging technologies in data mining and information security. 3rd ed. Berlin: Springer; 2018. p377-382.
  18. Cook IA, O'Hara R, Uijtdehaage SH, Mandelkern M, Leuchter AF. Assessing the accuracy of topographic EEG mapping for determining local brain function. Electroencephalogr Clin Neurophysiol. 1998;107:408-414. https://doi.org/10.1016/S0013-4694(98)00092-3
  19. Naatanen R. Attention and brain function. Behav Sci. 2018;1:516.
  20. Lim SH, Park SK, Kim DJ, Baek JS, Park CW. Usefulness of direct cortical stimulation during intraoperative monitoring in patients with brain tumor near motor cortex. Korean J Clin Lab Sci. 2018;50:211-215. https://doi.org/10.15324/kjcls.2018.50.2.211
  21. Kim CS. Analysis of the continuous monitored electroencephalogram patterns in intensive care unit. Korean J Clin Lab Sci. 2017;49:294-299. https://doi.org/10.15324/kjcls.2017.49.3.294
  22. Keil A, Debener S, Gratton G, Junghofer M, Kappenman ES, Luck SJ, et al. Committee report: publication guidelines and recommendations for studies using electroencephalography and magnetoencephalography. Psychophysiology. 2014;51:1-21. https://doi.org/10.1111/psyp.12147
  23. Gross J, Baillet S, Barnes GR, Henson RN, Hillebrand A, Jensen O, et al. Good practice for conducting and reporting MEG research. Neuroimage. 2013;65:349-363. https://doi.org/10.1016/j.neuroimage.2012.10.001
  24. Picton T, Bentin S, Berg P, Donchin E, Hillyard S, Johnson R, et al. Guidelines for using human event-related potentials to study cognition: recording standards and publication criteria. Psychophysiology. 2000;37:127-152. https://doi.org/10.1111/1469-8986.3720127
  25. Ferree TC, Luu P, Russell GS, Tucker DM. Scalp electrode impedance, infection risk, and EEG data quality. Clin Neurophysiol. 2001;112:536-544. https://doi.org/10.1016/S1388-2457(00)00533-2
  26. Kim EH. A Study on the Effect of TV advertising models by EEG. Korean Journal of Communication Studies. 2010;18:273-299.
  27. Jiang X, Bian GB, Tian ZJS. Removal of artifacts from EEG signals: a review. Sensors. 2019;19:987. https://doi.org/10.3390/s19050987
  28. Jerri AJ. The shannon sampling theorem-its various extensions and applications: a tutorial review. Proceeding of the IEEE. 1977;65:1565-1596. https://doi.org/10.1109/PROC.1977.10771
  29. Chung KM, Lee D, Park JY. Involuntary attention restoration suring exposure to mobile-based $360{\circ}$virtual nature in healthy adults with different levels of restorative experience: event-related potential study. J Med Internet Res. 2018;20:E11152. https://doi.org/10.2196/11152
  30. Kim SH, Park SK, Baek JS, Kim KK, Kim KE, Lee YJ. Evoked potentials before the intractable epilepsy surgery Korean J Clin Lab Sci. 2019;51:198-204. https://doi.org/10.15324/kjcls.2019.51.2.198
  31. Kim KW. Updataes in intraoperative neruophysiological monitoring. J Korean Neurol Assoc. 2014:258-263. https://doi.org/10.17340/jkna.2018.3.30
  32. Cho SH. A review on the theoretical background and its application of event-related brain potnetials. Audiol Speech Res. 2011;7:10-18. https://doi.org/10.21848/audiol.2011.7.1.10
  33. Park KD. Brainstem auditory evoked potential. Korean J Clin Neurophysiol. 2001;3:187-197.
  34. Rubinov M, Sporns O. Complex network measures of brain connectivity: uses and interpretations. Neuroimage. 2010;52:1059-1069. https://doi.org/10.1016/j.neuroimage.2009.10.003
  35. Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods. 2004;134:9-21. https://doi.org/10.1016/j.jneumeth.2003.10.009
  36. Luck SJ. An introduction to the event-related potential technique. 2nd ed. Massachusetts: MIT Press; 2014. p185-217.
  37. Chen X, Liu Q, Tao W, Li L, Lee S, Liua A, et al. ReMAE: A sser-friendly toolbox for removing Muscle artifacts from EEG. IEEE T Instrum Meas. 2019;1-15.
  38. Tsuchida TN, Acharya JN, Halford JJ, Kuratani JD, Sinha SR, Stecker MM, et al. American clinical neurophysiology society: EEG guidelines introduction. J Clin Neurophysio. 2016;33:301-302. https://doi.org/10.1097/WNP.0000000000000315
  39. Mecarelli O. Clinical electroencephalography. 1st ed. Cahm: Spinger; 2019. p91-107.
  40. Bacigalupo F, Luck SJ. Lateralized suppression of alpha-band EEG activity as a mechanism of target processing. J Neurosci. 2019;39:900-917. https://doi.org/10.1523/jneurosci.0183-18.2018
  41. Oh JY, Cho DR, Kim JJ, Heo JS, Park JS, Na SH, et al. Changes in heart rate variability of patients with delirium in intensive care unit. Conf Proc IEEE Eng Med Biol Soc. 2017:3118-3121.

Cited by

  1. Quantitative EEG (QEEG) Analysis of Emotional Interaction between Abusers and Victims in Intimate Partner Violence: A Pilot Study vol.11, pp.5, 2019, https://doi.org/10.3390/brainsci11050570
  2. Differences in Student Brain Activation from Digital Learning Based on Risk of Digital Media Addiction vol.18, pp.21, 2021, https://doi.org/10.3390/ijerph182111061