• Title/Summary/Keyword: Clinical physiologic testing

Search Result 5, Processing Time 0.031 seconds

Reproducibility of Statistical Motor Unit Number Estimate in Amyotrophic Lateral Sclerosis: Comparisons between Size-and Number-Weighted Modifications (근위축성 측삭 경화증에서의 Statistical Motor Unit Number Estimate 재연성: Size-and Number-Weighted Modifications간의 비교)

  • Kwon, Oh Yun;Lee, Kwang-Woo
    • Annals of Clinical Neurophysiology
    • /
    • v.5 no.1
    • /
    • pp.27-33
    • /
    • 2003
  • Background: Motor unit number estimation (MUNE) can directly assess motor neuron populations in muscle and quantify the degree of physiologic and/or pathologic motor neuron degeneration. A high degree of reproducibility and reliability is required from a good quantitative tool. MUNE, in various ways, is being increasingly applied clinically and statistical MUNE has several advantages over alternative techniques. Nevertheless, the optimal method of applying statistical MUNE to improve reproducibility has not been established. Methods: We performed statistical MUNE by selecting the most compensated compound muscle action potential (CMAP) area as a test area and modified the results obtained by weighted mean surface-recorded motor unit potential (SMUP). Results: MUNE measures in amyotrophic lateral sclerosis (ALS) patients showed better reproducibility with sizeweighted modification. Conclusions: We suggest size-weighted MUNE testing of "neurogenically compensated"CMAP areas present an optimal method for statistical MUNE in ALS patients.

  • PDF

Review of the UBC Porcine Model of Traumatic Spinal Cord Injury

  • Kim, Kyoung-Tae;Streijger, Femke;Manouchehri, Neda;So, Kitty;Shortt, Katelyn;Okon, Elena B.;Tigchelaar, Seth;Cripton, Peter;Kwon, Brian K.
    • Journal of Korean Neurosurgical Society
    • /
    • v.61 no.5
    • /
    • pp.539-547
    • /
    • 2018
  • Traumatic spinal cord injury (SCI) research has recently focused on the use of rat and mouse models for in vivo SCI experiments. Such small rodent SCI models are invaluable for the field, and much has been discovered about the biologic and physiologic aspects of SCI from these models. It has been difficult, however, to reproduce the efficacy of treatments found to produce neurologic benefits in rodent SCI models when these treatments are tested in human clinical trials. A large animal model may have advantages for translational research where anatomical, physiological, or genetic similarities to humans may be more relevant for pre-clinically evaluating novel therapies. Here, we review the work carried out at the University of British Columbia (UBC) on a large animal model of SCI that utilizes Yucatan miniature pigs. The UBC porcine model of SCI may be a useful intermediary in the pre-clinical testing of novel pharmacological treatments, cell-based therapies, and the "bedside back to bench" translation of human clinical observations, which require preclinical testing in an applicable animal model.

The Changes in Range of Motion after a Lumbar Spinal Arthroplasty with Charite$^{TM}$ in the Human Cadaveric Spine under Physiologic Compressive Follower Preload: A Comparative Study between Load Control Protocol and Hybrid Protocol

  • Kim, Se-Hoon;Chang, Ung-Kyu;Chang, Jae-Chil;Chun, Kwon-Soo;Lim, T. Jesse;Kim, Daniel H.
    • Journal of Korean Neurosurgical Society
    • /
    • v.46 no.2
    • /
    • pp.144-151
    • /
    • 2009
  • Objective: To compare two testing protocols for evaluating range of motion (ROM) changes in the preloaded cadaveric spines implanted with a mobile core type Charite$^{TM}$ lumbar artificial disc. Methods: Using five human cadaveric lumbosacral spines (L2-S2), baseline ROMs were measured with a bending moment of 8 Nm for all motion modes (flexion/extension, lateral bending, and axial rotation) in intact spine. The ROM was tracked using a video-based motion-capturing system. After the Charite$^{TM}$ disc was implanted at the L4-L5 level, the measurement was repeated using two different methods: 1) loading up to 8 Nm with the compressive follower preload as in testing the intact spine (Load control protocol), 2) loading in displacement control until the total ROM of L2-S2 matches that when the intact spine was loaded under load control (Hybrid protocol). The comparison between the data of each protocol was performed. Results: The ROMs of the L4-L5 arthroplasty level were increased in all test modalities (p < 0.05 in bending and rotation) under both load and hybrid protocols. At the adjacent segments, the ROMs were increased in all modes except flexion under load control protocol. Under hybrid protocol, the adjacent segments demonstrated decreased ROMs in all modalities except extension at the inferior segment. Statistical significance between load and hybrid protocols was observed during bending and rotation at the operative and adjacent levels (p< 0.05). Conclusion: In hybrid protocol, the Charite$^{TM}$ disc provided a relatively better restoration of ROM, than in the load control protocol, reproducing clinical observations in terms of motion following surgery.

Autosomal Recessive Malignant Infantile Osteopetrosis Associated with a TCIRG1 Mutation: A Case Report of a Neonate Presenting with Hypocalcemia in South Korea

  • Oh, Yun Kyo;Choi, Koung Eun;Shin, Youn-Jeong;Kim, Eun Ryoung;Kim, Ji Yeon;Kim, Min Sun;Cho, Sung Yoon;Jin, Dong Kyu
    • Neonatal Medicine
    • /
    • v.28 no.3
    • /
    • pp.133-138
    • /
    • 2021
  • Osteopetrosis refers to a group of genetic skeletal disorders characterized by osteosclerosis and fragile bones. Osteopetrosis can be classified into autosomal dominant, autosomal recessive, or X-linked forms, which might differ in clinical characteristics and disease severity. Autosomal recessive osteopetrosis, also known as malignant osteopetrosis, has an earlier onset, more serious clinical symptoms, and is usually fatal. We encountered a 1-day-old girl who was born full-term via vaginal delivery, which was complicated by meconium-stained amniotic fluid, cephalo-pelvic disproportion, and nuchal cord. Routine neonatal care was provided, in addition to blood tests and chest radiography to screen for sepsis, as well as skull radiography to rule out head injuries. Initial blood tests revealed hypocalcemia, which persisted on follow-up tests the next day. Radiographic examinations revealed diffusely increased bone density and a "space alien" appearance of the skull. Based on radiographic and laboratory findings, the infantile form of osteopetrosis was suspected and genetic testing for identification of the responsible gene. Eventually, a heterozygous mutation of the T cell immune regulator 1, ATPase H+ transporting V0 subunit a3 (TCIRG1) gene (c.292C>T) was identified, making this the first reported case of neonatal-onset malignant osteopetrosis with TCIRG1 mutation in South Korea. Early-onset hypocalcemia is common and usually results from prematurity, fetal growth restriction, maternal diabetes, perinatal asphyxia, and physiologic hypoparathyroidism. However, if hypocalcemia persists, we recommend considering 'infantile of osteopetrosis' as a rare cause of neonatal hypocalcemia and performing radiographic examinations to establish the diagnosis.

EEG Recording Method for Quantitative Analysis (정량적 분석을 위한 뇌파 측정 방법)

  • Heo, Jaeseok;Chung, Kyungmi
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.51 no.4
    • /
    • pp.397-405
    • /
    • 2019
  • Quantitative electroencephalography (QEEG) has been widely used in research and clinical fields. QEEG has been widely used to objectively document cerebral changes for the purpose of identifying the electrophysiological biomarkers across various clinical symptoms and for the stimulation of specific cortical regions associated with cognitive function. In electroencephalography (EEG), the difference in quantitative and qualitative analyses is discriminated not by its measurement methods and relevant clinical or research environments, but by its analysis methods. When performing a qualitative analysis, it is possible for a medical technologist or experienced researchers to read the EEG waveforms to exclude artifacts. However, the quantitative analysis is still based on mathematical modeling, and all EEG data are included for the analysis, leading the results to be affected by unexpected artifacts. In the hospital setting, the case that the medical technologists in charge of the EEG test perform academic research has been little reported, compared to other clinical physiological measurement-based research. This is because there are few laboratories specialized in clinical physiological research. In this respect, this study is expected to be utilized as a basic reference material for medical technologists, students, and academic researchers, all of whom would like to conduct a quantitative analysis.