DOI QR코드

DOI QR Code

Statistical Approximation of Szász Type Operators Based on Charlier Polynomials

  • Kajla, Arun (Department of Mathematics, Central University of Haryana)
  • Received : 2018.01.13
  • Accepted : 2018.12.27
  • Published : 2019.12.23

Abstract

In the present note, we study some approximation properties of the Szász type operators based on Charlier polynomials introduced by S. Varma and F. Taşdelen (Math. Comput. Modelling, 56 (5-6) (2012) 108-112). We establish the rates of A-statistical convergence of these operators. Finally, we prove a Voronovskaja type approximation theorem and local approximation theorem via the concept of A-statistical convergence.

Keywords

References

  1. F. Altomare, M. C. Montano and V. Leonessa, On a generalization of Szasz-Mirakjan-Kantorovich operators, Results Math., 63(2013), 837-863. https://doi.org/10.1007/s00025-012-0236-z
  2. G. A. Anastassiou and O. Duman, A Baskakov type generalization of statistical Korovkin theory, J. Math. Anal. Appl., 340(2008), 476-486. https://doi.org/10.1016/j.jmaa.2007.08.040
  3. A. Aral, A generalization of Szasz-Mirakyan operators based on q-integers, Math. Comput. Modelling, 47(9/10)(2008), 1052-1062. https://doi.org/10.1016/j.mcm.2007.06.018
  4. A. Aral and O. Duman, A Voronovskaya type forumla for SMK operators via statistical convergence, Math. Slovaca, 61(2011), 235-244. https://doi.org/10.2478/s12175-011-0008-3
  5. C . Atakut and N. Ispir, Approximation by modified Szasz-Mirakjan operators on weighted spaces, Proc. Indian Acad. Sci. Math. Sci., 112(2002), 571-578. https://doi.org/10.1007/BF02829690
  6. A. Ciupa, On a generalized Favard-Szasz type operator, Research Seminar on Numerical and Statistical Calculus,, 33-38, Preprint 94-1, Babes-Bolyai Univ. Cluj-Napoca, 1994.
  7. R. A. Devore and G. G. Lorentz, Constructive approximation, Springer-Verlag, Berlin, 1993.
  8. E. E. Duman and O. Duman, Statistical approximation properties of high order operators constructed with the Chan-Chayan-Srivastava polynomials, Appl. Math. Comput., 218(2011), 1927-1933. https://doi.org/10.1016/j.amc.2011.07.004
  9. E. E. Duman, O. Duman and H. M. Srivastava, Statistical approximation of certain positive linear operators constructed by means of the Chan-Chayan-Srivastava polynomials, Appl. Math. Comput., 182(2006), 231-222.
  10. O. Duman and C. Orhan, Statistical approximation by positive linear operators, Studia Math., 161(2)(2004), 187-197. https://doi.org/10.4064/sm161-2-6
  11. Z. Finta, N. K. Govil and V. Gupta, Some results on modified Szasz-Mirakjan operators, J. Math. Anal. Appl., 327(2007), 1284-1296. https://doi.org/10.1016/j.jmaa.2006.04.070
  12. A. D. Gadjiev and C. Orhan, Some approximation theorems via statistical convergence, Rocky Mountain. J. Math., 32(1)(2002), 129-138. https://doi.org/10.1216/rmjm/1030539612
  13. V. Gupta and R. P. Agarwal, Convergence estimates in approximation theory, Springer, Cham, 2014.
  14. V. Gupta and M. A. Noor, Convergence of derivatives for certain mixed Szasz-Beta operators, J. Math. Anal. Appl., 321(2006), 1-9. https://doi.org/10.1016/j.jmaa.2005.07.036
  15. V. Gupta, T. M. Rassias, P. N. Agrawal and A. M. Acu, Recent advances in constructive approximation theory, Springer Optimization and Its Applications 138. Springer, Cham, 2018.
  16. V. Gupta and G. Tachev, Approximation with positive Linear operators and linear combinations, Developments in Mathematics 50, Springer, Cham, 2017.
  17. V. Gupta, G. Tachev, and A. M. Acu, Modified Kantorovich operators with better approximation properties, Numer. Algorithms, 81(2019), 125--149. https://doi.org/10.1007/s11075-018-0538-7
  18. M. E. H. Ismail, Classical and quantum orthogonal polynomials in one variable, Encyclopedia of Mathematics and its Applications 98. Cambridge University Press, Cambridge, 2009.
  19. A. Jakimovski and D. Leviatan, Generalized Szasz operators for the approximation in the infinite interval, Mathematica (Cluj), 34(1969), 97-103.
  20. A. Kajla and P. N. Agrawal, Szasz-Kantorovich type operators based on Charlier polynomials, Kyungpook Math. J., 56(2016), 877-897. https://doi.org/10.5666/KMJ.2016.56.3.877
  21. A. Kajla and P. N. Agrawal, Approximation properties of Szasz type operators based on Charlier polynomials, Turkish. J. Math., 39(2015), 990-1003. https://doi.org/10.3906/mat-1502-80
  22. H. S. Kasana, G. Prasad, P. N. Agrawal and A. Sahai, Modified Szasz operators, Mathematical analysis and its applications (Kuwait, 1985), 29-41, KFAS Proc. Ser. 3, Pergamon, Oxford, 1988.
  23. S. M. Mazhar and V. Totik, Approximation by modified Szasz operators, Acta Sci. Math., 49(1985), 257-269.
  24. M. Orkcu and O. Dogru, Weighted statistical approximation by Kantorovich type q-Szasz-Mirakjan operators. Appl. Math. Comput., 217(20)(2011), 7913-7919. https://doi.org/10.1016/j.amc.2011.03.009
  25. M. Orkcu and O. Dogru, Statistical approximation of a kind of Kantorovich type q-Szasz-Mirakjan operators, Nonlinear Anal., (75)(2012), 2874-2882.
  26. M. A. Ozarslan, A-statistical converegence of Mittag-Leffler operators, Miskolc Math. Notes, 14(2013), 209-217. https://doi.org/10.18514/MMN.2013.475
  27. C. Radu, On statistical approximation of a general class of positive linear operators extended in q-calculus, Appl. Math. Comput., 215(2009), 2317-2325. https://doi.org/10.1016/j.amc.2009.08.023
  28. O. Szasz, Generalization of S. Bernstein's polynomials to the infinite interval, J. Res. Nat. Bur. Standards, 45(1950), 239-245. https://doi.org/10.6028/jres.045.024
  29. S. Varma, S. Sucu and G. Icoz, Generalization of Szasz operators involving Brenke type polynomials, Comput. Math. Appl., 64(2012), 121-127. https://doi.org/10.1016/j.camwa.2012.01.025
  30. S. Varma and F. Tasdelen, Szasz type operators involving Charlier polynomials, Math. Comput. Modelling, 56(2012), 118-122. https://doi.org/10.1016/j.mcm.2011.12.017