DOI QR코드

DOI QR Code

중/고고도 영역에서의 우주발사체 주위 유동에 대한 수치적 연구

Numerical Investigation of Flows around Space Launch Vehicles at Mid-High Altitudes

  • Choi, Young Jae (Department of Aerospace Engineering, Korea Advanced Institute of Science and Technology) ;
  • Choi, Jae Hoon (Aircraft System Division, Korea Aerospace Research Institute) ;
  • Kwon, Oh Joon (Department of Aerospace Engineering, Korea Advanced Institute of Science and Technology)
  • 투고 : 2018.09.19
  • 심사 : 2018.11.21
  • 발행 : 2019.01.01

초록

본 연구에서는 중/고고도 영역에서 운행되는 우주발사체 주위 유동에 대한 해석을 효율적으로 하기 위해 삼차원 Navier-Stokes 방정식을 해석하는 비 정렬 격자 기반의 맥스웰의 미끄럼 경계조건이 적용된 유동 해석자를 개발하였다. 유동해석자의 검증은 축대칭 형태의 blunted cone-tip 형상에 대한 해석을 통해 수행하였다. 해석 결과는 타 연구자의 실험 및 직접모사법 해석 결과와 비교를 통해 일치하는 결과를 확인하였고, 속도 슬립 및 온도 점프에 대한 예측을 통해 본 유동해석자의 신뢰성을 확보하였다. 검증된 해석자를 이용하여 고도 86km의 중/고고도 영역에서 마하수 6으로 비행하는 우주발사체에 대한 유동 해석을 수행하였으며, 중/고고도 영역에서 나타나는 유동 현상들에 대해 고찰하였다.

In the present study, to investigate flows around space launch vehicles at mid-high altitudes efficiently, a three-dimensional unstructured mesh Navier-Stokes solver employing a Maxwell slip boundary condition was developed. Validation of the present flow solver was made for a blunted cone-tip configuration by comparing the results with those of the DSMC simulation and experiment. It was found that the present flow solver works well by capturing the velocity slip and the temperature jump on the solid surface more efficiently than the DSMC simulation. Flow simulations of space launch vehicles were conducted by using the flow solver. Mach number of 6 at the mid-high altitude around 86km was considered, and the flow phenomena at the mid-high altitude was discussed.

키워드

참고문헌

  1. Bird, G. A., Molecular Gas Dynamics and the Direct Simulation of Gas Flows, Clarendon, Oxford, 1994.
  2. Lockerby, D. A., Reese, J. M., Emerson, D. R., and Barber, R. W., "Velocity boundary condition at solid walls in rarefied gas calculations," Physical Review E., Vol. 70, 2004, Paper 017303.
  3. Lockerby, D. A., Reese, J. M., Barber, R. W., and Emerson, D. R., "Geometric and Constitutive Dependence of Maxwell's Velocity Slip Boundary Condition," AIP Conference Proceedings, Vol. 761, No. 1, 2005, pp.725-730.
  4. Wang, W., and Boyd, I. D., "Hybrid DSMC-CFD Simulation of Hypersonic Flow Over Sharp and Blunted Bodies," AIAA Thermophysics Conference, 2003-3644, 2003.
  5. Myong, R. S., "Gaseous Slip Model Based on the Langmuir Adsorption Isotherm," Physics Fluids, Vol. 16, No. 1, 2004, pp.104-117. https://doi.org/10.1063/1.1630799
  6. Pamadi, B. N., Tartabini, P. V., and Starr, B. R., "Ascent, Stage Separation and Glideback Performance of a Partially Reusable Small Launch Vehicle," AIAA paper, 2004-0876, 2004.
  7. Murphy, K. J., Buning, P. G., Pamadi, B. N., Scallion, W. I., and Jones, K. M., "Overview of Transonic to Hypersonic Stage Separation Tool Development for Multi-Stage-to-Orbit concept," AIAA paper, 2004-2595, 2004.
  8. Pamadi, B. N., et al., "Simulation and Analysis of Staging Maneuvers of Next Generation Reusable Launch Vehicles," AIAA paper, 2004-5185, 2004.
  9. Murphy, K. J., and Scallion, W. I., "Experimental Stage Separation Tool Development in NASA Langley's Aerothermodynamics Laboratory," AIAA paper, 2005-6127, 2005.
  10. Pamadi, B. N., et al., "Simulation and Analysis of Stage Separation of Two-Stage Reusable Launch Vehicles," Journal of Spacecraft and Rockets, Vol. 44, No. 1, 2007, pp.66-80. https://doi.org/10.2514/1.17896
  11. You, J. Y., and Kwon, O. J., "Blending of SAS and Correlation-based Transition Models for Flow Simulation at Supercritical Reynolds Numbers," Computers & Fluids, Vol. 80, 2013, pp.63-70. https://doi.org/10.1016/j.compfluid.2012.05.016
  12. Gökçen, T., and MacCormack, R. W., "Nonequilibrium Effects for Hypersonic Transition Flows Using Continuum Approach," Proceedings of 27th Aerospace Science Meeting, AIAA paper, 1989-0461, 1989.
  13. Holden, M. S., "Measurement in Regions of Laminar Shock Wave/Boundary Layer Interaction in Hypersonic Flow - Code Validation," CUBRC Report in CD-ROW, 2003.
  14. Lofthouse, A., "Nonequilibrium Hybersonic Aerothermodynamics Using the Direct Simulation Monte Carlo and Navier-Stokes Models," Ph.D. Dissertation, Univ. of Michigan, Ann Arbor, USA, 2008.