DOI QR코드

DOI QR Code

비례제어밸브를 이용한 초음속 제트의 추력편향 제어

Thrust Vectoring Control of Supersonic Jet Using Proportional Control Valves

  • Lee, MyungYeon (Graduate School of Aerospace & Mechanical Engineering, Korea Aerospace University) ;
  • Lee, Yeol (School of Aerospace & Mechanical Engineering, Korea Aerospace University)
  • 투고 : 2018.07.17
  • 심사 : 2018.11.21
  • 발행 : 2019.01.01

초록

비례제어밸브를 이용한 초음속 추력편향제어의 특성을 관찰하기 위한 실험적 연구가 진행되었다. 노즐 압력비에 따라 세 가지 서로 다른 추력편향 제어특성이 나타나고, 밸브작동에 따른 강한 이력현상이 관찰되었다. 아울러 이차챔버의 압력이 추력편향에 영향을 주는 주요 인자 중의 하나임이 확인되었다. 이에 이력현상을 회피하고 밸브제어에 따른 안정된 추력편향을 구현하기 위하여 이차챔버의 압력계수를 이용한 제어 알고리즘이 적용되었다. 그 결과 비례제어밸브를 통하여 최대 추력편향각 $20^{\circ}$ 범위에서 안정적인 추력편향제어가 구현 가능함이 확인되었다.

An experimental study is performed to observe the characteristics of the thrust vectoring control (TVC) of the supersonic jet using proportional control valves. It is observed that three different TVC characteristics exist as the nozzle pressure ratio varies. Strong hysteresis phenomena are also observed during the valve control for a certain range of the nozzle pressure ratio. It is also noticed that the secondary chamber pressure is one of the influencing parameters for the TVC. Therefore, a control algorithm utilizing the secondary chamber pressure coefficient as a predictor is applied to achieve the stable TVC avoiding the hysteresis. Consequently, the stable TVC with the maximum deflection angle of about 20-degree has been realized using the proportional control valves.

키워드

참고문헌

  1. Berrier, B. L., and Re, R. J., "A review of thrust-vectoring schemes for fighter applications," AIAA/SAE 14th Joint Propulsion Conference, July, 1978, 78-1023.
  2. Deere, K. A., "Summary of Fluidic Thrust Vectoring Research Conducted at NASA Langley Research Center", 21st AIAA Applied Aerodynamics Conference, June, 2003, AIAA 2003-3800.
  3. Strykowski, P. J., Krothapalli, A., and Forliti, D. J., "Counterflow thrust vectoring of supersonic jets," AIAA Journal, Vol. 34, No. 11, 1996, pp.2306-2314. https://doi.org/10.2514/3.13395
  4. Flamm, J., "Experimental study of a nozzle using fluidic counterflow for thrust vectoring," 34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 1998, 98-3255.
  5. Van der Veer, M. R., and Strykowski, P. J., "Counterflow Thrust Vector Control of Subsonic Jets: Continuous and Bistable Regimes," Journal of Propulsion and Power, Vol. 13, No. 3, 1997, pp. 412-420. https://doi.org/10.2514/2.5179
  6. Schmid, G. F., Strykowski, P. J., Madruga M., Das D. and Krothapalli, A., "Jet Attachment Behavior using Counterflow Thrust Vectoring" 13th ONR Propulsion Conference, August 2000.
  7. Santos, M. M., "Experimental Study on Counter Flow Thrust Vectoring of a Gas Turbine Engine," Ph.D. Thesis, Dept. of Mechanical Engineering ,Florida State Univ, Tallahassee, 2005.
  8. Mason, M., and Crowther, W., "Fluidic Thrust Vectoring of Low Observalbe Aircraft," 2nd AIAA Flow Control Conference, June 2004, AIAA 2004-2210.
  9. Saghafi, F., and Banazadeh, A., "Co-flow Fluidic Thrust Vectoring Requirements for Longitudinal and Lateral Trim Purposes," AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, July 2006, AIAA 2006-4980.
  10. Banazadeh, A., Saghafi, F., Ghoreyshi, M., and Pilidis, P., "Experimental and computational investigation into the use of co-flow fluidic thrust vectoring on a small gas turbine," The Aeronautical Journal, Vol. 112, 2008, pp.17-25. https://doi.org/10.1017/S0001924000001950
  11. Yoon, S. H., Jun, D. H., Heo, J. Y., Sung, H. G., and Lee, Y., "Experimental Study of Thrust Vectoring of Supersonic Jet Using Co-Flowing Coanda Effects," Journal of the Korean Society for Aeronautical and Space Sciences, Vol. 40, No. 11, 2012, pp.927-933. https://doi.org/10.5139/JKSAS.2012.40.11.927
  12. Song, M. J., Park, S. H., and Lee, Y., "Application of Backstep Coanda Flap for Supersonic Coflowing Fluidic Thrust-Vector Control," AIAA Journal, Vol. 52, No. 10, 2014, pp.2355-2359. https://doi.org/10.2514/1.J052971
  13. Lee, M. Y., Song, M. J., Kim, D. B., and Lee, Y., "Bidirectional Thrust Vectoring Control of a Rectangular Sonic Jet," AIAA Journal, Vol. 56, No. 6, 2018, pp.2494-2498. https://doi.org/10.2514/1.J056598
  14. Bevilaqua, P. M., and Lee, J. D., "Design of Supersonic Coanda Jet Nozzles," NASA. Ames Research Center Proceedings of the Circulation-Control Workshop, May 1987, pp.289-312
  15. Matsuo, S., Setoguchi, T., and Kaneko, K., "Study on the Characteristics of Supersonic Coanda Jet," Journal of Thermal Science, Vol. 7, No. 3, 1998, pp.165-175. https://doi.org/10.1007/s11630-998-0012-2
  16. Siauw, W. L., Bonnet, J. P., Tensi, J., and Cattafesta, L. N., "Physics of separated flow over a NACA "0015" airfoil and detection of flow separation," 47th AIAA Aerospace Sciences Meeting, January 2009, 2009-144.
  17. Benard, N., Cattafesta, L. N., Moreau, E., Griffin, J., and Bonnet, J., "On the benefits of hysteresis effects for closed-loop separation control using plasma actuation," Physics of Fluids, Vol. 23, Issue. 8, 2011, pp.083601.1-17.