DOI QR코드

DOI QR Code

Rockfall Behavior with Catchment Area Condition

포집공간 조건에 따른 낙석의 거동

  • Lee, Jundae (Department of Civil Engineering, Semyung University) ;
  • Kwon, Youngcheul (Department of Civil Engineering and Management, Tohoku Institute of Technology) ;
  • Bae, Wooseok (NANO-GEO ENC Co. Ltd.)
  • Received : 2018.10.12
  • Accepted : 2018.12.04
  • Published : 2019.01.01

Abstract

Various development works inevitably increase cutting slopes due to land use, and many of trails managed by different authorities are being deteriorated by long-term weathering. Collapse of slopes causes unavoidable damage of property and loss of lives because of its uncertainty and difficulty in predicting its occurrence. In order to overcome the unavoidability, America, Japan, and several European nations analyze the kinetic energy and moving distance when rocks of upper slope move along the inclined plane, via field tests and computerized interpretation of the test results. Also, they are making efforts to develop measures with which the kinetic energy of the rocks moving along the slope is absorbed and fails to reach to specific structures. However, domestic researches just focus on fragmentary prediction of rockfall using existing programs, and there have been few approaches to identify interpretation methods appropriate for domestic cases or determination of parameters. In this context, we in this study defined rockfall types and affecting factors and analyzed effects of parameters using a general-purpose rockfall simulation program to understand principles of rockfall and to estimate effects of various parameters.

현재 각종 개발사업으로 절토 비탈면은 토지이용에 따라 불가피하게 증가되고 있는 추세에 있으며, 다양한 관리 주체에 의해 운영되고 있는 탐방로 비탈면은 오랜 풍화로 인해 노후화되고 있는 현실이다. 비탈면의 붕괴는 그 불확실성과 발생시점에 대한 예측 불가능으로 불가피한 재산 및 인명피해가 발생하고 있는 상황이다. 이러한 불가피성을 극복하기 위해 미국, 일본, 유럽 등지에서는 사면상부 암괴가 경사면을 따라 이동하는 현상에 대해서 현장시험과 이에 대한 컴퓨터 해석프로그램을 통하여 암괴 이동에 따른 운동에너지와 이동거리 등을 분석하고 있다. 그러나 국내의 연구는 기존의 프로그램을 활용하여 단편적인 낙석거동을 예측하는 데 그치고 있으며 국내 상황에 적합한 해석방법이나 매개변수의 결정에 대한 접근이 매우 제한적인 것이 사실이다. 따라서 본 연구에서는 낙석의 거동 원리를 파악하고 다양한 매개변수의 영향을 평가하기 위해 낙석의 유형과 적용되는 인자를 정의하고 범용 낙석 시뮬레이션 프로그램을 이용하여 매개변수의 영향을 분석하였다.

Keywords

HJHGC7_2019_v20n1_35_f0001.png 이미지

Fig. 1. Cross-section for analysis

HJHGC7_2019_v20n1_35_f0002.png 이미지

Fig. 2. Variation of kinetic energy with rockfall height

HJHGC7_2019_v20n1_35_f0003.png 이미지

Fig. 3. Variation of kinetic energy with slope inclination

HJHGC7_2019_v20n1_35_f0004.png 이미지

Fig. 4. Variation of rolling distance with ditch inclination

HJHGC7_2019_v20n1_35_f0005.png 이미지

Fig. 5. Variation of rebound height with ditch inclination

HJHGC7_2019_v20n1_35_f0006.png 이미지

Fig. 6. Variation of rebound height with slope inclination

Table 1. Major parameters for program rocfall

HJHGC7_2019_v20n1_35_t0001.png 이미지

References

  1. Broili, L. (1973), In situ tests for the study of rockfall, geologia applicatae idrogeologia, Vol. 8, No. 1, pp. 105-111.
  2. Chau, K. T., Wong, R. H. C. and Wu, J. J. (2002), Coefficient of restitution and rotational motions of rockfall impacts, International Journal of Rock Mechanics and Mining Science, Vol. 39, pp. 69-77. https://doi.org/10.1016/S1365-1609(02)00016-3
  3. Hoek, E. (1986), Rockfall: a Computer Program for Predicting Rockfall Trajectories, Unpublished Internal Notes, Golder Associates, Vancouver.
  4. Hwang, Y. C., Kim, S. H. and Lee, S. H. (2010), Proposal for installation of rockfall protection fence considering rockfall trace, Proceedings of Korean Geoenvironmental Society, pp. 351-357 (In Korean).
  5. Jeong, N. S. (2000), Analysis of rockfall movement by initial motion modes, Master's thesis, Yonsei university, pp. 1-81 (In Korean).
  6. Kim, D. H., Kim, S. C., Lee, W. J., Ryu, D. W. and Yoon, S. K. (2007), Estimation of weight distribution of rockfall block by joint measurement and study on its application to rockfall simulation, Journal of Korean Geotechnical Society, Vol. 23, No. 11, pp. 67-76 (In Korean).
  7. Kim, D. K., Kwon, N. H., Lee, S. H., Choi, H. W., Jeong, Y. H. and Park, S. C. (2016), Estimate the dangerous falling-stone place using drone, Proceedings of Transactions of the Society of CAD/CAM Engineers, pp. 951-958 (In Korean).
  8. Kim, K. S. (2010), Contemplation of rockfall simulation parameters and design of rockfall fence, Proceedings of Korean Geotechnical Society, pp. 344-350 (In Korean).
  9. Labiouse, V. and Heidenreich, B. (2009), Half scale experimental study of rockfall impacts on sandy slopes, National Hazards Earth System Science, No. 9., pp. 1981-1993.
  10. Lee, C. G., Ban, J. D., Yoon, H. S. and Seo, Y. S. (2016), Rockfall risk assessment of volcanic rocks in Ulleung-do, Proceedings of KSEG 2016 Fall Conference, p. 49 (In Korean).
  11. Lee, K. W., Kim, S. H. and Cho, S. D. (2017), A study on the slope stability assessment of Seokguram region in Gyeongju, Journal of Korean Geosynthetics Society, Vol. 16, No. 4, pp. 139-149 (In Korean). https://doi.org/10.12814/JKGSS.2017.16.4.139
  12. Ritchie, A. M. (1963), The evaluation of rockfall and its control, Highway Reserch Board, Vol. 17, pp. 13-28.
  13. Yu, S. Y. (2016), Rockfall behavior of natural slope with condition of catchment area, Master's thesis, Chungbuk National University, pp. 1-71 (In Korean).