References
- Anderson, T.L. (2017), Fracture Mechanics: Fundamentals and Applications, CRC press.
- ASTM D3967-16 (2016), Standard Test Method for Splitting Tensile Strength of Intact Rock Core Specimens, West Conshohocken, Pennsylvania, U.S.A.
- ASTM D4543-08 (2008), Standard Practices for Preparing Rock Core as Cylindrical Test Specimens and Verifying Conformance to Dimensional and Shape Tolerances, West Conshohocken, Pennsylvania, U.S.A.
- Behrens, H. and Muller, G. (1995), "An infrared spectroscopic study of hydrogen feldspar (HAlSi3O8)", Mineralog. Mag., 59(1), 15-24. https://doi.org/10.1180/minmag.1995.59.394.02
- Chang, S.H., Lee, C.I. and Jeon, S. (2002), "Measurement of rock fracture toughness under modes I and II and mixed-mode conditions by using disc-type specimens", Eng. Geol., 66(1-2), 79-97. https://doi.org/10.1016/S0013-7952(02)00033-9
- Costanzo, P., Giese, R. and Lipsicas, M. (1984), "Static and dynamic structure of water in hydrated kaolinites; I, The static structure", Clay. Clay Miner., 32(5), 419-128. https://doi.org/10.1346/CCMN.1984.0320511
- Detournay, E. (2016), "Mechanics of hydraulic fractures", Ann. Rev. Fluid Mech., 48(1), 311-339. https://doi.org/10.1146/annurev-fluid-010814-014736
- Dott Jr, R.H. (1964), "Wacke, Graywacke and matrix-what approach to immature sandstone classification?", J. Sediment. Res., 34(3), 625-632.
- Dyke, C.G. and Dobereiner, L. (1991), "Evaluating the strength and deformability of sandstones", Quart. J. Eng. Geol. Hydrogeol., 24, 123-134. https://doi.org/10.1144/GSL.QJEG.1991.024.01.13
- Eggleton, R. and Buseck, P. (1980), "High resolution electron microscopy of feldspar weathering", Clay. Clay Miner., 28(3), 173-178. https://doi.org/10.1346/CCMN.1980.0280302
- Erguler, Z. and Ulusay, R. (2009), "Water-induced variations in mechanical properties of clay-bearing rocks", Int. J. Rock Mech. Min. Sci., 46(2), 355-370. https://doi.org/10.1016/j.ijrmms.2008.07.002
- Feng, X.T., Ding, W.X. and Zhang, D.X. (2009), "Multi-crack interaction in limestone subject to stress and flow of chemical solutions", Int. J. Rock Mech. Min. Sci., 46(1), 159-171. https://doi.org/10.1016/j.ijrmms.2008.08.001
- Feng, X.T., Li, S.J. and Chen, S.L. (2004), "Effect of water chemical corrosion on strength and cracking characteristics of rocks-a review", Key Eng. Mater., 261-263, 1355-1360. https://doi.org/10.4028/www.scientific.net/KEM.261-263.1355
- Fowell, R.J. (1995), "Suggested method for determining mode I fracture toughness using Cracked Chevron Notched Brazilian Disc (CCNBD) specimens", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 32(1), 57-64. https://doi.org/10.1016/0148-9062(94)00015-U
- Fowell, R.J. and Xu, C. (1994), "The use of the cracked Brazilian disc geometry for rock fracture investigations", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 31(6), 571-579. https://doi.org/10.1016/0148-9062(94)90001-9
- Fyfe, W.S., Price, N.J. and Thompson, A.B. (1978), Fluids in the Earth's crust. Developments in Geochemistry 1, Elsevier, 3-4.
- Gao, G., Huang, S., Xia, K. and Li, Z. (2015), "Application of digital image correlation (DIC) in dynamic notched semicircular bend (NSCB) tests", Exp. Mech., 55(1), 95-104. https://doi.org/10.1007/s11340-014-9863-5
- Gonzales, G.L., Gonzalez, J.A., Castro, J.T. and Freire, J.L. (2017), "A J-integral approach using digital image correlation for evaluating stress intensity factors in fatigue cracks with closure effects", Theor. Appl. Fract. Mech., 90, 14-21. https://doi.org/10.1016/j.tafmec.2017.02.008
- Gupta, M., Alderliesten, R.C. and Benedictus, R. (2015), "A review of T-stress and its effects in fracture mechanics", Eng. Fract. Mech., 134, 218-241. https://doi.org/10.1016/j.engfracmech.2014.10.013
- Hadizadeh, J. and Law, R.D. (1991), "Water-weakening of sandstone and quartzite deformed at various stress and strain rates", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 28(5), 431-439. https://doi.org/10.1016/0148-9062(91)90081-V
- Hawkins, A.B. and Mcconnell, B.J. (1992), "Sensitivity of sandstone strength and deformability to changes in moisture content", Quart. J. Eng. Geol., 25(2), 115-130. https://doi.org/10.1144/GSL.QJEG.1992.025.02.05
- Karakul, H. and Ulusay, R. (2013), "Empirical correlations for predicting strength properties of rocks from p-wave velocity under different degrees of saturation", Rock Mech. Rock Eng., 46(5), 981-999. https://doi.org/10.1007/s00603-012-0353-8
- Kim, E. and Changani, H. (2016), "Effect of water saturation and loading rate on the mechanical properties of Red and Buff Sandstones", Int. J. Rock Mech. Min. Sci., 88, 23-28. https://doi.org/10.1016/j.ijrmms.2016.07.005
- Kim, E. and De Oliveira, D.B.M. (2015), "The effects of water saturation on dynamic mechanical properties in red and buff sandstones having different porosities studied with Split Hopkinson Pressure Bar (SHPB)", Appl. Mech. Mater., 752, 784-789. https://doi.org/10.4028/www.scientific.net/AMM.752-753.784
- Kim, E., Garcia, A. and Changani, H. (2018), "Fragmentation and energy absorption characteristics of Red, Berea and Buff sandstones based on different loading rates and water contents", Geomech. Eng., 4(2), 151-159.
- Kim, E., Stine, M.A., De Oliveira, D.B.M. and Changani, H. (2017), "Correlations between the physical and mechanical properties of sandstones with changes of water content and loading rates", Int. J. Rock Mech. Min. Sci., 100, 255-262. https://doi.org/10.1016/j.ijrmms.2017.11.005
- Knauss, W.G. (2015), "A review of fracture in viscoelastic materials", Int. J. Fract., 196(1-2), 99-146. https://doi.org/10.1007/s10704-015-0058-6
- La Rosa, G., Clienti, C., Marino Cugno Garrano, A. and Lo Savio, F. (2017), "A novel procedure for tracking the measuring point in thermoelastic curves using D.I.C.", Eng. Fract. Mech., 183, 53-65. https://doi.org/10.1016/j.engfracmech.2017.06.011
- Labuz, J.F., Shah, S.P. and Dowding, C.H. (1985), "Experimental analysis of crack propagation in granite", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 22(2), 85-98. https://doi.org/10.1016/0148-9062(85)92330-7
- Le, J.L., Manning, J. and Labuz, J.F. (2014), "Scaling of fatigue crack growth in rock", Int. J. Rock Mech. Min. Sci., 72, 71-79. https://doi.org/10.1016/j.ijrmms.2014.08.015
- Lim, I.L., Johnston, I.W., Choi, S.K. and Boland, J.N. (1994), "Fracture testing of a soft rock with semi-circular specimens under three-point bending. Part 1-mode I", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 31(3), 185-197. https://doi.org/10.1016/0148-9062(94)90463-4
- Lin, M.L., Jeng, F.S., Tsai, L.S. and Huang, T.H. (2005), "Wetting weakening of tertiary sandstones-microscopic mechanism", Environ. Geol., 48(2), 265-275. https://doi.org/10.1007/s00254-005-1318-y
- Lin, Q. and Labuz, J.F. (2013), "Fracture of sandstone characterized by digital image correlation", Int. J. Rock Mech. Min. Sci., 60, 235-245. https://doi.org/10.1016/j.ijrmms.2012.12.043
- Lippmann, F. (1976), "Corrensite, a swelling clay mineral, and its influence on floor heave in tunnels in the Keuper formation", Bull. Int. Assoc. Eng. Geol., 14(1), 65-68. https://doi.org/10.1007/BF02634730
- Liu, M. and Chen, C. (2015), "A micromechanical analysis of the fracture properties of saturated porous media", Int. J. Solids Struct., 63, 32-38. https://doi.org/10.1016/j.ijsolstr.2015.02.031
- Mann, R. and Fatt, I. (1960), "Effect of pore fluids on the elastic properties of sandstone", Geophysics, 25(2), 433-444. https://doi.org/10.1190/1.1438713
- Mooney, R., Keenan, A. and Wood, L. (1952), "Adsorption of water vapor by montmorillonite. II. Effect of exchangeable ions and lattice swelling as measured by X-ray diffraction", J. Am. Chem. Soc., 74(6), 1371-1374. https://doi.org/10.1021/ja01126a002
- Nara, Y., Meredith, P.G., Yoneda, T. and Kaneko, K. (2011), "Influence of macro-fractures and micro-fractures on permeability and elastic wave velocities in basalt at elevated pressure", Tectonophysics, 503(1-2), 52-59. https://doi.org/10.1016/j.tecto.2010.09.027
- Nasseri, M.H.B. and Mohanty, B. (2008), "Fracture toughness anisotropy in granitic rocks", Int. J. Rock Mech. Min. Sci., 45(2), 167-193. https://doi.org/10.1016/j.ijrmms.2007.04.005
- Nguyen, T.L., Hall, S.A., Vacher, P. and Viggiani, G. (2011), "Fracture mechanisms in soft rock: Identification and quantification of evolving displacement discontinuities by extended digital image correlation", Tectonophysics, 503(1-2), 117-128. https://doi.org/10.1016/j.tecto.2010.09.024
- Picard, M.D. (1971), "Classification of fine-grained sedimentary rocks", J. Sediment. Res., 41(1), 179-195.
- Plumb, R.A. (1994), Influence of Composition and Texture on the Failure Properties of Clastic Rocks, in Rock Mechanics in Petroleum Engineering, Society of Petroleum Engineers, Delft, The Netherlands.
- Schmidt, R.A. (1976), "Fracture-toughness testing of limestone", Exp. Mech., 16(5), 161-167. https://doi.org/10.1007/BF02327993
- Schumacher, F.P. and Kim, E. (2013), "Modeling the pipe umbrella roof support system in a Western US underground coal mine", Int. J. Rock Mech. Min. Sci., 60, 114-124. https://doi.org/10.1016/j.ijrmms.2012.12.037
- Shakoor, A. and Barefield, E.H. (2009), "Relationship between unconfined compressive strength and degree of saturation for selected sandstones", Environ. Eng. Geosci., 15(1), 29-40. https://doi.org/10.2113/gseegeosci.15.1.29
- Song, H., Zhang, H., Kang, Y., Huang, G., Fu, D. and Qu, C. (2013), "Damage evolution study of sandstone by cyclic uniaxial test and digital image correlation", Tectonophysics, 608, 1343-1348. https://doi.org/10.1016/j.tecto.2013.06.007
- Sutton, M.A., Orteu, J.J. and Schreier, H.W. (2009), Image Correlation for Shape, Motion and Deformation Measurements: Basic Concepts, Theory and Applications, Springer.
- Thompson, T.A., Sowder, K.H. and Johnson, M. (2013), Generalized Stratigraphic Column of Indiana Bedrock: Indiana Geological Survey Poster, Indiana Geological Survey: Bloomington, Indiana, U.S.A.
- Tracy, J., Waas, A. and Daly, S. (2015), "Experimental assessment of toughness in ceramic matrix composites using the J-integral with digital image correlation part II: Application to ceramic matrix composites", J. Mater. Sci., 50(13), 4659-4671. https://doi.org/10.1007/s10853-015-9017-x
- Vasarhelyi, B. and Van, P. (2006), "Influence of water content on the strength of rock", Eng. Geol., 84(1-2), 70-74. https://doi.org/10.1016/j.enggeo.2005.11.011
- Verstrynge, E., Adriaens, R., Elsen, J. and Van Balen, K. (2014), "Multi-scale analysis on the influence of moisture on the mechanical behavior of ferruginous sandstone", Construct. Build. Mater., 54(Supplement C), 78-90. https://doi.org/10.1016/j.conbuildmat.2013.12.024
- Weaver, C.E. (1989), Clays, Muds, and Shales: Development in Sedimentology, 44, Elsevier.
- Xu, W., Johnston, C.T., Parker, P. and Agnew, S.F. (2000), "Infrared study of water sorption on Na-, Li-, Ca-, and Mgexchanged (SWy-1 and SAz-1) montmorillonite", Clay. Clay Miner., 48(1), 120-131. https://doi.org/10.1346/CCMN.2000.0480115
- Yoneyama, S., Arikawa, S., Kusayanagi, S. and Hazumi, K. (2014), "Evaluating J-integral from displacement fields measured by digital image correlation", Strain, 50(2), 147-160. https://doi.org/10.1111/str.12074
- Zhang, Z.X. (2016), Environmental Effects on Rock Fracture, in Rock Fracture and Blasting, Butterworth-Heinemann, 135-153.
- Zhou, X.P. and Yang, H.Q. (2007), "Micromechanical modeling of dynamic compressive responses of mesoscopic heterogenous brittle rock", Theor. Appl. Fract. Mech., 48(1), 1-20. https://doi.org/10.1016/j.tafmec.2007.04.008
- Zhou, Z., Cai, X., Ma, D., Cao, W., Chen, L. and Zhou, J. (2018), "Effects of water content on fracture and mechanical behavior of sandstone with a low clay mineral content", Eng. Fract. Mech., 193, 47-65. https://doi.org/10.1016/j.engfracmech.2018.02.028
Cited by
- Energy Evolution Law of Ore-Bearing Rock during Unloading under High Static Stress and Frequent Disturbance vol.2020, 2019, https://doi.org/10.1155/2020/3806521
- Effects of water saturation time on energy dissipation and burst propensity of coal specimens vol.24, pp.3, 2019, https://doi.org/10.12989/gae.2021.24.3.205
- Hydro-mechanical coupling behaviors in the failure process of pre-cracked sandstone vol.24, pp.6, 2021, https://doi.org/10.12989/gae.2021.24.6.573