DOI QR코드

DOI QR Code

Characteristic Analysis for Compression of Digital Hologram

디지털 홀로그램의 압축을 위한 특성 분석

  • Kim, Jin-Kyum (Department of Electronic Material Engineering, Kwangwoon University) ;
  • Kim, Kyung-Jin (Department of Electronic Material Engineering, Kwangwoon University) ;
  • Kim, Woo-Suk (Department of Electronic Material Engineering, Kwangwoon University) ;
  • Lee, Yoon-Huck (Department of Electronic Material Engineering, Kwangwoon University) ;
  • Oh, Kwan-Jung (ETRI) ;
  • Kim, Jin-Woong (ETRI) ;
  • Kim, Dong-Wook (Department of Electronic Material Engineering, Kwangwoon University) ;
  • Seo, Young-Ho (Department of Electronic Material Engineering, Kwangwoon University)
  • 김진겸 (광운대학교 전자재료공학과) ;
  • 김경진 (광운대학교 전자재료공학과) ;
  • 김우석 (광운대학교 전자재료공학과) ;
  • 이윤혁 (광운대학교 전자재료공학과) ;
  • 오관정 (한국전자통신연구원) ;
  • 김진웅 (한국전자통신연구원) ;
  • 김동욱 (광운대학교 전자재료공학과) ;
  • 서영호 (광운대학교 전자재료공학과)
  • Received : 2018.12.31
  • Accepted : 2019.01.22
  • Published : 2019.01.30

Abstract

This paper introduces the analysis and development of digital holographic data codec technology to effectively compress hologram data. First, the generation method and data characteristics of the hologram standard data set provided by JPEG Pleno are introduced. We analyze energy compaction according to hologram generation method using discrete wavelet transform and discrete cosine transform. The quantization efficiency according to the hologram generation method is analyzed by applying uniform quantization and non-uniform quantization. We propose a transformation method quantization method suitable for hologram generation method through transform and quantization experiments. Finally, holograms are compressed using standard compression codecs such as JPEG, JPEG2000, AVC/H.264 and HEVC/H.265 and the results are analyzed.

본 논문에서는 홀로그램 데이터를 효과적으로 압축하기 위한 디지털 홀로그래픽 데이터 코덱 기술 분석 및 개발을 소개한다. 먼저, JPEG Pleno에서 제공하는 홀로그램 표준 데이터세트의 생성방법과 데이터의 특성을 소개한다. 이산 웨이블릿 변환과 이산 코사인 변환을 이용하여 홀로그램 생성방법에 따른 에너지 집중도를 분석한다. 균일 양자화와 비균일 양자화를 적용시켜 홀로그램 생성방법에 따른 양자화 효율을 분석한다. 변환과 양자화 실험을 통해 홀로그램 생성방법에 맞는 변환기법 양자화방법을 제시한다. 마지막으로, 표준 압축 코덱인 JPEG, JPEG2000, AVC/H.264, HEVC/H.265를 이용해 홀로그램을 압축하고 그 결과를 분석한다.

Keywords

BSGHC3_2019_v24n1_164_f0001.png 이미지

그림 1. ERC interfere 데이터 세트를 이용한 복원 결과 (a) 2D Dice, (b) 2D Multi, (c) 3D Multi, (d) 3D Venus, (e) 3D Cat Fig. 1. Reconstruction result using ERC interfere data set (a) 2D Dice, (b) 2D Multi, (c) 3D Multi, (d) 3D Venus, (e) 3D Cat

BSGHC3_2019_v24n1_164_f0002.png 이미지

그림 3. UBI EmergIMG 데이터 세트를 이용한 복원 결과 (a)우주 비행사, (b) 자동차, (c) 체스, (d) 해골 Fig. 3. Reconstruction result using UBI EmergIMG data set (a) Astronaut, (b) Car, (c) Chess, (d) Skull

BSGHC3_2019_v24n1_164_f0003.png 이미지

그림 2. B-COM 데이터 세트를 이용한 복원 결과 (a) 발레1080p, (b) 브레이크댄서1080p, (c) 주사위1080p, (d) 피아노1080p Fig. 2. Reconstruction result using B-COM data set (a) Ballet1080p, (b) Breakdancers1080p, (c) Dices1080p, (d) Piano1080p

BSGHC3_2019_v24n1_164_f0004.png 이미지

그림 4. 실험에 사용된 홀로그램의 히스토그램 (a) 2D 멀티의 실수 및 허수, (b) 3D 멀티의 실수 및 허수, (c) 주사위1080p RGB성분의 실수, (d) 주사위1080p RGB 성분의 허수 Fig. 4. Histograms of holograms used in the experiment; real and imaginary of (a) 2D Multi, (b) 3D Multi, (c) real of RGB in Dices1080p, (d) imaginary of RGB in Dices1080p

BSGHC3_2019_v24n1_164_f0005.png 이미지

그림 5. 8×8 블록단위 DCT 에너지 계산 Fig. 5. 8×8 Block based DCT energy calculation

BSGHC3_2019_v24n1_164_f0006.png 이미지

그림 6. 선별된 필터 계수 (a) Bi-Orthogonal 저역통과필터, (b) Bi-Orthogonal 고역통과필터, (c) Reverse Bi-Orthogonal 저역통과필터, (d) Reverse Bi-Orthogonal 고역통과필터 Fig. 6. Filter coefficient (a) Bi-Orthogonal Low pass filter, (b) Bi-Orthogonal high pass filter, (c) Reverse Bi-Orthogonal Low pass filter, (d) Reverse Bi-Orthogonal high pass filter

BSGHC3_2019_v24n1_164_f0007.png 이미지

그림 7. 2 레벨 DWT 에너지 계산 Fig. 7. 2 Level DWT energy Calculation

BSGHC3_2019_v24n1_164_f0008.png 이미지

그림 8. 균일 스칼라 양자화기 예시 Fig. 8. uniform scalar quantization example

BSGHC3_2019_v24n1_164_f0009.png 이미지

그림 9. A-Law 방식의 비균일 양자화기 예시 (a) 압축기, (b) 신장기 Fig. 9. A-law non-uniform scalar quantization example (a) compressor (b) expander

BSGHC3_2019_v24n1_164_f0010.png 이미지

그림 10. μ-Law방식의 비균일 양자화기 (a) 압축기 (b) 신장기 Fig. 10. μ-law non-uniform scalar quantization example (a) compressor (b) expander

BSGHC3_2019_v24n1_164_f0011.png 이미지

그림 11. 홀로그램 부호화 및 복호화 순서도 (a) 2D Multi, 3D Multi, Dices1080p 단채널 (b) Dices1080p 다채널 Fig. 11. Hologram encoding and decoding flowchart (a) 2D Multi, 3D Multi, Dices1080p single channel (b) Dices1080p multi channel

BSGHC3_2019_v24n1_164_f0012.png 이미지

그림 12. Bi-Orthogonal (1, 1) 필터의 에너지 집중도 Fig. 12. Bi-Orthogonal (1, 1) filter energy compaction

BSGHC3_2019_v24n1_164_f0013.png 이미지

그림 13. Reverse Bi-Orthogonal (3, 3) 필터의 에너지 집중도 Fig. 13. Reverse Bi-Orthogonal (3, 3) filter energy compaction

BSGHC3_2019_v24n1_164_f0014.png 이미지

그림 14. DCT 에너지 집중도 Fig. 14. DCT energy compaction

BSGHC3_2019_v24n1_164_f0015.png 이미지

그림 15. Bi-Orthogonal(1, 1) 결과 (a) 2D Multi, (b) 3D Multi, (c) Dices1080p Fig. 15. Bi-Orthogonal (1, 1) results (a) 2D Multi, (b) 3D Multi, (c) Dices 1080p

BSGHC3_2019_v24n1_164_f0016.png 이미지

그림 16. Reverse Bi-Orthogonal(3, 3) 결과 (a) 2D Multi, (b) 3D Multi,

BSGHC3_2019_v24n1_164_f0017.png 이미지

그림 16. Reverse Bi-Orthogonal(3, 3) 결과 (a) 2D Multi, (b) 3D Multi, 그림 17. 64×64 블록 단위 DCT 결과 (a) 2D Multi, (b) 3D Multi, (c) Dices1080p Fig. 17. 64×64 block based DCT results (a) 2D Multi, (b) 3D Multi, (c) Dices 1080p(c) Dices1080p Fig. 16. Reverse Bi-Orthogonal (3, 3) results (a) 2D Multi, (b) 3D Multi, (c) Dices 1080p

BSGHC3_2019_v24n1_164_f0018.png 이미지

그림 18. 양자화 된 Multi 2D를 복원한 홀로그램의 진폭영상 (a) 1비트 균일 양자화 영상, (b) 8비트 균일 양자화 영상, (c) 1비트 A-Law 비균일 양자화 영상, (d) 8비트 A-Law 비균일 양자화 영상, (e) 1비트 μ-Law 비균일 양자화 영상, (f) 8비트 μ-Law 비균일 양자화 영상 Fig. 18. Reconstructed quantization Multi 2D amplitude image (a) 1bit uniform quantization image, (b) 8bit uniform quantization image, (c) 1bit A-law non-uniform quantization image, (d) 8bit A-law non-uniform quantization image, (e) 1bit μ-Law non-uniform quantization image, (f) 8-bit μ-law non-uniform quantization image

BSGHC3_2019_v24n1_164_f0019.png 이미지

그림 19. 양자화 된 Dices 1080p를 복원한 홀로그램의 진폭영상 (a) 1비트 균일 양자화 영상, (b) 8비트 균일 양자화 영상, (c) 1비트 A-Law 비균일 양자화 영상, (d) 8비트 A-Law 비균일 양자화 영상, (e) 1비트 μ-Law 비균일 양자화 영상, (f) 8비트 μ-Law 비균일 양자화 영상 Fig. 19. Reconstructed quantization Dices 1080p amplitude image (a) 1bit uniform quantization image, (b) 8bit uniform quantization image, (c) 1bit A-law non-uniform quantization image, (d) 8bit A-law non-uniform quantization image, (e) 1bit μ-Law non-uniform quantization image, (f) 8-bit μ-law non-uniform quantization image

BSGHC3_2019_v24n1_164_f0020.png 이미지

그림 20. 실수와 허수 이미지의 양자화 결과에 대한 평균적인 PSNR 비교 (a) 홀로그램 결과 (b) 복원된 홀로그램 결과 Fig. 20. Average PSNR comparison of quantization results of real and imaginary images (a) hologram results (b) reconstructed hologram results

BSGHC3_2019_v24n1_164_f0021.png 이미지

그림 21. 원본 홀로그램과 복원된 홀로그램에 대한 결과 (부동소수점) (a) 2D Multi, (b) 3D Multi, (c) 4:4:4 Dices1080p (RGB 평균), (d) 채널 분리 Dices1080p(RGB 평균) Fig. 21. Results for original Hologram and reconstructed Hologram (Floating points) (a) 2D Multi, (b) 3D Multi, (c) 4:4:4 Dices1080p (RGB average), (d) Channel separation Dices1080p (RGB average)

BSGHC3_2019_v24n1_164_f0022.png 이미지

그림 22. 원본 홀로그램과 복원된 홀로그램에 대한 결과 (정규화) (a) 2D Multi, (b) 3D Multi, (c) Dices1080p(RGB 평균), (d) 채널 분리 Dices1080p(RGB 평균) Fig. 22. Results for original Hologram and reconstructed Hologram (Normalizaiton) (a) 2D Multi, (b) 3D Multi, (c) 4:4:4 Dices1080p (RGB average), (d) Channel separation Dices1080p (RGB average)

BSGHC3_2019_v24n1_164_f0023.png 이미지

그림 23. 원본 홀로그램과 복호화된 홀로그램의 복원에 대한 결과 (정규화) (a) 2D Multi, (b) 3D Multi, (c) Dices1080p(RGB 평균), (d) 채널 분리 Dices1080p(RGB 평균) Fig. 23. Results for original Hologram and reconstruction decoded Hologram (Normalizaiton) (a) 2D Multi, (b) 3D Multi, (c) 4:4:4 Dices1080p (RGB average), (d) Channel separation Dices1080p (RGB average)

BSGHC3_2019_v24n1_164_f0024.png 이미지

그림 24. 2D Multi 압축 결과 (a) QP 0, (b) QP 30, (c) QP 50 Fig. 24. Results for compression 2D Multi (a) QP 0, (b) QP 30, (c) QP 50

BSGHC3_2019_v24n1_164_f0025.png 이미지

그림 25. 3D Multi 압축 결과 (a) QP 0, (b) QP 30, (c) QP 50 Figure 25. Results for compression 3D Multi (a) QP 0, (b) QP 30, (c) QP 50

BSGHC3_2019_v24n1_164_f0026.png 이미지

그림 26. Dices1080p 압축 결과 (a) QP 0, (b) QP 30, (c) QP 50 Fig. 26. Results for compression Dices1080p (a) QP 0, (b) QP 30, (c) QP 50

표 1. 표준 코덱에 따른 파라미터 Table 1. Parameter according to standard codec

BSGHC3_2019_v24n1_164_t0001.png 이미지

References

  1. Dennis Gabor, "'A new microscopic principle", Nature, 161, pp. 777-778, 1948. https://doi.org/10.1038/161777a0
  2. P. Hariharan, "Basics of Holography", Cambridge University Press, May 2002.
  3. W. Osten, A. Faridian, P. Gao, K. Korner, D. Naik, G. Pedrini, Al. Kumar Singh, M. Takeda, and M. Wilke, "Recent advances in digital holography [Invited]," Appl. Opt. 53, G44-G63, 2014. https://doi.org/10.1364/AO.53.000G44
  4. H. Yoshikawa, "Digital holographic signal processing," Proc. TAO First International Symposium on Three Dimensional Image Communication Technologies, pp. S-4-2, Dec. 1993.
  5. Y.H. Seo, Hyun-Jun Choi, and Dong-Wook Kim, "Lossy Coding Technique for Digital Holographic Signal", SPIE Optical Engineering, Vol. 45, No. 6, pp. 065802-1-065802-10, Jun. 2006.
  6. Y.H. Seo, H. J. Choi, J. S. Yoo, G. S. Lee, C. H. Kim, S. H. Lee, S. H. Lee, and D. W. Kim, "Digital hologram compression technique by eliminating spatial correlations based on MCTF." Optics Communications, vol. 283, no. 21, pp. 4261-4270, Nov. 2010. https://doi.org/10.1016/j.optcom.2010.06.052
  7. F. Dufaux, Y. Xing, Y. B. P. Popescu, and P. Schelkens, "Compression of digital holographic data: an overview." In Applications of Digital Image Processing XXXVIII. International Society for Optics and Photonics. vol. 9599, no. 95990I, pp. 1-11, Sep. 2015.
  8. J. P. Peixeiro, C. Brites, J. Ascenso, and F. Pereira, "Holographic data coding: Benchmarking and extending hevc with adapted transforms." IEEE Transactions on Multimedia, vol. 20, no. 2, pp. 282-297, Feb.2018 https://doi.org/10.1109/TMM.2017.2742701
  9. Y. H. Seo, H. J. Choi and D. W. Kim, "3D scanning-based compression technique for digital hologram video", Signal Processing: Image Communication, vol. 22, no. 2, pp. 144-156, Nov. 2006. https://doi.org/10.1016/j.image.2006.11.007
  10. E. Darakis and T. J. Naughton, "Compression of digital hologram sequences using MPEG-4", SPIE Proc, vol. 7358, pp. 735811-1, May 2009.
  11. P. Tsang, K. W. K. Cheung, T. C. Poon, and C. Zhou, "Demonstration of compression ratio of over 4000 times for each digital hologram in a sequence of 25 frames in a holographic video." Journal of Optics, vol. 14, no. 12, pp. 1-7, Dec. 2012.
  12. Y.H. Seo, Y. H. Lee, J. S. Yoo, and D. W. Kim, "Scalable hologram video coding for adaptive transmitting service." Applied optics, vol. 52, no. 1, pp. A254-A268, Jan. 2013. https://doi.org/10.1364/AO.52.00A254
  13. JPEG Pleno https://jpeg.org/jpegpleno/
  14. H. Gu Kim and Y. M. Ro, "Ultrafast layer based computer-generated hologram calculation with sparse template holographic fringe pattern for 3-D object," Opt. Express 25, 30418-30427, 2017. https://doi.org/10.1364/OE.25.030418
  15. H. Zhang, L. Cao, and G. Jin, "Computer-generated hologram with occlusion effect using layer-based processing," Appl. Opt. 56, F138-F143, 2017. https://doi.org/10.1364/AO.56.00F138
  16. P. Su, W. Cao, J. Ma, Bi. Cheng, X. Liang, L. Cao, and G. Jin, "Fast Computer-Generated Hologram Generation Method for Three-Dimensional Point Cloud Model," J. Display Technol. 12, 1688-1694, 2016. https://doi.org/10.1109/JDT.2016.2553440
  17. P. W. M. Tsang, T.-C. Poon, and Y. M. Wu, "Review of fast methods for point-based computer-generated holography [Invited]," Photon. Res. 6, 837-846, 2018. https://doi.org/10.1364/PRJ.6.000837
  18. H. Yeom, Y. Ji, S. Kim, S. Ko, S. Kim, H. Zhang, B. Li, K. Shin, M. Askari, and J. Park, "Hologram synthesis with correct reflectance distribution in fully analytic mesh-based method," in Imaging and Applied Optics 2016, OSA Technical Digest (online), Optical Society of America, 2016.
  19. Y. Ju and J. Park, "Fast Generation of Mesh Based CGH in Head-Mounted Displays using Foveated Rendering Technique," in Imaging and Applied Optics 2018 (3D, AO, AIO, COSI, DH, IS, LACSEA, LS&C, MATH, pcAOP), OSA Technical Digest, Optical Society of America, 2018.
  20. Logan A. Williams, Georges Nehmetallah, Rola Aylo, and Partha P. Banerjee, "Application of up-sampling and resolution scaling to Fresnel reconstruction of digital holograms," Appl. Opt. 54, 1443-1452. 2015. https://doi.org/10.1364/AO.54.001443
  21. S. Lee, H. Chang, H. Wey, and D. Nam, "Sampling and error analysis of radial symmetric interpolation for fast hologram generation," Appl. Opt. 55, A104-A110, 2016. https://doi.org/10.1364/AO.55.00A104
  22. Chor Shen Tay, Ken Tanizawa, and Akira Hirose, "High-quality frame interpolation in computer generated holographic movies using coherent neural networks with a hybrid learning method," Appl. Opt. 47, 5221-5228, 2008. https://doi.org/10.1364/AO.47.005221
  23. P. W. M. Tsang, Y. T. Chow, and T.-C. Poon, "Enhancement on the generation of sampled phase-only holograms," Chin. Opt. Lett. 13, 060901, 2015. https://doi.org/10.3788/COL201513.060901
  24. Yuan Hong, Tielin Shi, Yichun Zhang, and Guanglan Liao, "Fringe contrast enhancement of digital off-axis hologram via sparse representation," Chin. Opt. Lett. 14, 060901, 2016. https://doi.org/10.3788/COL201614.060901
  25. Lingfeng Yu, Yingfei An, and Lilong Cai, "Numerical reconstruction of digital holograms with variable viewing angles," Opt. Express 10, 1250-1257, 2002. https://doi.org/10.1364/OE.10.001250
  26. Xin Li, Juan Liu, Tao Zhao, and Yongtian Wang, "Color dynamic holographic display with wide viewing angle by improved complex amplitude modulation," Opt. Express 26, 2349-2358, 2018. https://doi.org/10.1364/OE.26.002349
  27. P. Memmolo, V. Bianco, M. Paturzo, B. Javidi, P. A. Netti, and P. Ferraro, "Encoding multiple holograms for speckle-noise reduction in optical display," Opt. Express 22, 25768-25775, 2014. https://doi.org/10.1364/OE.22.025768
  28. D. Hincapie, J. H.-Ramirez, and J. G.-Sucerquia, "Single-shot speckle reduction in numerical reconstruction of digitally recorded holograms," Opt. Lett. 40, 1623-1626, 2015. https://doi.org/10.1364/OL.40.001623
  29. M.-Misiti, Y.-Misiti, G.- Oppenheim and J-M.- Poggi, "Wavelet Toolobox Reference", Sep. 2018 Online Only
  30. Wavelet browser, http://wavelets.pybytes.com/
  31. Quantization (signal processing), https://en.wikipedia.org/wiki/Quantization_(signal_processing)
  32. A-law algorithm, https://en.wikipedia.org/wiki/A-law_algorithm
  33. $\mu$-law algorithm, https://en.wikipedia.org/wiki/%CE%9C-law_algorithm