DOI QR코드

DOI QR Code

Verifying the Possibility of Investigating Tree Ages Using Resistograph

레지스토그래피를 이용한 수령조사 가능성 검토

  • Oh, Jung-ae (Wood Products Analysis & Certification Division, Korea Forestry Promotion Institute) ;
  • Seo, Jeong-Wook (Department of Wood and Paper Science, Chungbuk National University) ;
  • Kim, Byung-Ro (Department of Wood and Paper Science, Chungbuk National University)
  • Received : 2018.10.25
  • Accepted : 2019.01.03
  • Published : 2019.01.25

Abstract

This study aims to determine the ideal feed speed of a resistograph to evaluate the number of tree rings in several tree species. The needle speed was fixed at 1,500 r/min. Herein, various tree species, such as Pseudotsuga menziesii, Pinus koraiensis, Abies holophylla, and Zelkova serrata, were considered for experiments. Results showed that the most proper feed speed for Zelkova serrata, Larix kaempferi, Pseudotsuga menziesii, Abies holophylla, and Pinus koraiensis was 75, 100, 100, 150, and 175 cm/min, respectively. However, in all the cases, the electric resistance values of tree ring narrower than 1 mm were not suitable for determining tree-ring boundaries. Upon comparing the inter-annual time series of ring widths and electric resistance values of resistograph, a meaningful synchronization was verified. If resistograph would be improved to the extent that it can measure tree rings narrower than 1 mm, it can replace the conventional method used for counting the number of tree rings in the increment cores. Additionally, it can also be used to investigate the tree growth.

본 연구는 수목의 수령을 조사하는 방법으로 레지스토그래피를 활용하는데 있어서 수종별로 가장 적합한 삽입속도를 찾기 위하여 수행되었다. 회전속도는 1,500 r/min로 고정하였다. 수종은 낙엽송, 더글라스 퍼, 잣나무, 전나무, 느티나무이다. 실험결과 수종에 따른 적합한 삽입속도는 느티나무 75 cm/min, 낙엽송과 더글라스 퍼 100 cm/min, 전나무 150 cm/min, 잣나무 175 cm/min으로 나타났다. 하지만 모든 경우에서 연륜폭이 1 mm이하일 경우 연륜경계 확인이 어려운 것으로 확인되었다. 연륜폭이 1 mm이하인 경우를 제외하고는 연륜폭측정기와 레지스토그래피의 연륜폭그래프는 매우 일치하였다. 향후 연륜폭이 1mm 이하인 미세연륜 확인이 가능한 레지스토그래피가 개발된다면 레지스토그래피가 수령조사를 위해 전통적으로 활용되는 생장편의 연륜관찰방법을 대체할 수 있을 것이다. 또한 레지스토그래피의 연륜폭그래프는 생장량 조사에도 활용할 수 있을 것으로 판단된다.

Keywords

HMJGBP_2019_v47n1_90_f0001.png 이미지

Fig. 1. Resistograph, where A is adapter sleeve, B is control unit, C is handle bar, and D is battery.

HMJGBP_2019_v47n1_90_f0002.png 이미지

Fig. 2. Ring-width measurement method for Pinus densiflora using PD-tool pro, where w is the tree-ring width.

HMJGBP_2019_v47n1_90_f0003.png 이미지

Fig. 3. Comparing the curves with needle speeds of (A) 1500 and (B) 2000 r/min.

HMJGBP_2019_v47n1_90_f0004.png 이미지

Fig. 4. Resistograph profile of softwood and hardwood, where A is Abies holophylla and B is Zelkova serrata.

HMJGBP_2019_v47n1_90_f0005.png 이미지

Fig. 6. Annual variations in the tree-ring widths measured by LINTAB system (dotted line) and resistograph (solid line) and the annual variations of latewood rate for Zelkova serrata.

HMJGBP_2019_v47n1_90_f0006.png 이미지

Fig. 7. Annual variations in tree-ring widths measured by LINTAB system (dotted line) and resistograph (solid line) and the annual variations of latewood rate for Larix kaempferi.

HMJGBP_2019_v47n1_90_f0007.png 이미지

Fig. 8. Cross-dating results after the removal of narrow rings (Zelkova serrata).

HMJGBP_2019_v47n1_90_f0008.png 이미지

Fig. 5. Annual variations in the tree-ring widths measured by LINTAB system (dotted line) and resistograph (solid line) and the annual variations of latewood rate for Abies holophylla.

Table 1. Preliminary test to compare the number of tree rings determined by the resistograph with the number of tree rings determined by the traditional tree-ring measurement technique in dendrochronology for five different tree species

HMJGBP_2019_v47n1_90_t0001.png 이미지

Table 2. Results of tree-ring analysis according to the feed speed of resistograph

HMJGBP_2019_v47n1_90_t0002.png 이미지

Table 3. Measurement results of tree-ring widths between the two methods

HMJGBP_2019_v47n1_90_t0003.png 이미지

Table 4. Differences of the number of tree rings between the two methods

HMJGBP_2019_v47n1_90_t0004.png 이미지

Table 5. t-value matrix between LINTAB and resistograph

HMJGBP_2019_v47n1_90_t0005.png 이미지

Table 6. Glk matrix between LINTAB and resistograph

HMJGBP_2019_v47n1_90_t0006.png 이미지

References

  1. Bilgin, G., Adnan, G., Gokhan, K. 2012. Is Resistograph an Appropriate Tool for the Annual Ring Measurement of Pinus brutia?. NDE for safety / Defektoskopie 2012.
  2. Ceralid, C., Mormone, V., Ermolli, E.R. 2001. Resistographic Inspection of Ancient Structures for the Evaluation of Mechanical Characteristics. Materials and structures 34(235): 59-63. https://doi.org/10.1007/BF02482201
  3. Denise, J., Gregory, M., Michael, T., Marc, N. 2010. The Measurement of Wood Decay in Landscape Trees. Arboriculture & Urban Forestry 36(3): 121-127.
  4. Dujesiefken, D., Liese, W. 2006. Die wundrektionen von baumen- CODIT Heute. In: D. Dujesiefken, P. Kockerbeck (eds), Jahrbuch der Baumpflege 2006: 21-40. Thalacker Medien, Braunschweig.
  5. Eckstein, D., Sass, U. 1994. Bohrwiderstandsmessungen an Laubbaumen und ihre holzanatomische Interpretation. Holz als Rohund Werkstoff 52: 279-286. https://doi.org/10.1007/BF02621413
  6. Fikret, I., Bailian, L. 2003. Rapid Assessment of Wood Density of Live Trees Using the Resistograph for Selection in Tree Improvement Programs. Canadian Journal of Forest Research 33: 2426-2435. https://doi.org/10.1139/x03-176
  7. Frank, R. 1994. Resistographic Visualization of Treering Density Variations. International Conference on Tree Rings, Environment, and Humanity.
  8. Frank, R. 2012. Basics of Micro-resistance Drilling for Timber Inspection. Holztechnologie 53(3): 24-29.
  9. Frank, R. 2013. Detecting Fungal Decay in Palm Stems by Resistance Drilling. Florida arborist spring 2013.
  10. Frankenstein, C., Eckstein, D., Schmitt, U. 2005. The Onset of Cambium Activity - A Matter of Agreement?. Dendrochronologia 23(1): 57-62. https://doi.org/10.1016/j.dendro.2005.07.007
  11. Gruber, F. 2000. Vergleichende Messergebnisse zur Identifizierung von Schadstellen im Fichtenholz (Picea abies L. Karst.) mit den Bohrmessgeaten Teredo, Resistograph 1410 und Impulshammer-Schallmesssystem. Allgemeine Forest und Jagdzeitung 172.
  12. Grunwald, C., Stabile, J., Waldman, J., Gross, R., Wirgin, I. 2002. Population Genetics of Shortnose Sturgeon Acipenser Brevirostrum Based on Mitochondrial DNA Control Region Sequences. Molecular Ecology 11(10): 1885-1898. https://doi.org/10.1046/j.1365-294X.2002.01575.x
  13. Hwang, W.J., Kanetaka, S., Sasaki, T. 2008. Possibility of Deterioration Diagnosis for Wooden Structures using Resistograph. Journal of the Korean Wood Science and Technology Conference Proceedings. pp. 71-72.
  14. IML Australia (C). 2013. IML Resistograph Testing Standard, Procedures & Audit. IML wood testing systems.
  15. Jeong, H.M., Kim, Y.J., Seo, J.W. 2017. Relationships between vessel-lumen-area time series of Quercus spp. at Mt. Songni and corresponding climatic factors. Journal of the Korean Wood Science and Technology 45(1): 72-84. https://doi.org/10.5658/WOOD.2017.45.1.72
  16. Jung, S.Y., Seo, M.S., Hong, J.Y., Kim, S.J., Jung A,M., Kim, J.S. 2014. Study on the Discoloration Identified from the Column of Wooden house, Hyunchungsa (Shrine) - Focused on Influence of Microorganisms and Correlation with Strength. Journal of National Cultural Properties Research Institute 47(4): 58-73.
  17. Lee, K.J. 2014. An introduction to forest science. Hyangmunsa Press, Seoul, Korea.
  18. Lukaszkiewicz, J., Kosmala, M., Chrapka, M., Borowski, J. 2005. Determining the Age of Streetside Tilia cordata trees with a DBH-BASED Model. Journal of Arboriculture 31(6): 280-284.
  19. Michael, S., Erin, M., Joseph M., Richard, G. 2003, Use and Calibration of the Resistograph for Analysis of Oak (Quercus sp.) Decay and Callus Formation Associated with Fire Scars. University of Missouri, Department of Forestry.
  20. Oh, J.A., Seo, J.W., Kim, B.R. 2017. Establishing Local Master Ring-Width Chronologies and Their Utilization for Estimating The Age of Big Old Trees. Journal of the Korean Wood Science and Technology 45(1): 85-95. https://doi.org/10.5658/WOOD.2017.45.1.85
  21. Saez, J.L., Corona, C., Berger, F. 2008. Use of Resistograph for Dendrogeomorphological Analysis of Avalanche Impacts (massif de l'Oisans, France). Geophysical Research Abstracts. Vol.10.
  22. Seo, J.W., Choi, E.B., Ju, J.D., Shin, C.S. 2017a. The association of intra-annual cambial activities of Pinus koraiensis and Chamaecyparis pisifera in Mt. Worak with climatic factors. Journal of the Korean Wood Science and Technology 45(1): 43-52. https://doi.org/10.5658/WOOD.2017.45.1.43
  23. Seo, J.W., Jeong, H.M., Sano, M., Choi, E.B., Park, J.H., Lee, K.H., Kim, Y.J., Park, H.C. 2017b. Establishing tree ring ${\delta}$ 18O chronologies for principle tree species (T. cuspidata, P. koraiensis, A. koreana, Q. mongolica) at subalpine zone in Mt. Jiri National Park and their correlations with the corresponding climate. Journal of the Korean Wood Science and Technology 45(5): 661-670. https://doi.org/10.5658/WOOD.2017.45.5.661
  24. Shigo, A.L., Marx, H.G. 1977. Compartmentalization of decay in trees. USDA Forest Service Agriculture imformation Bulletin 405.
  25. Son, Y.M. 2007. Age measurement of trees. National Institute of Forest Science.
  26. Ukrainetz, N.K., O'Neill, G.A. 2010. An Analysis of Sensitivities Contributing Measurement Error to Resistograph Values. Canadian Journal of Forest Research 40: 806-811. https://doi.org/10.1139/X10-019