TABLE 1. Certain members belonging to the Appell family
TABLE 2. Results for pHn(v)(x)
TABLE 3. Results for pBn(a)(x)
TABLE 4. Results for pEn(a)(x)
References
- L. Aceto, H. R. Malonek, and G. Tomaz, A unified matrix approach to the representation of Appell polynomials, Integral Transforms Spec. Funct. 26 (2015), no. 6, 426-441. https://doi.org/10.1080/10652469.2015.1013035
- L. C. Andrews, Special Functions for Engineers and Applied Mathematicians, Macmillan Co., New York, 1985.
- M. Anshelevich, Appell polynomials and their relatives. III. Conditionally free theory, Illinois J. Math. 53 (2009), no. 1, 39-66. https://doi.org/10.1215/ijm/1264170838
- P. Appell, Sur une classe de polynomes, Ann. Sci. Ecole Norm. Sup. (2) 9 (1880), 119-144. https://doi.org/10.24033/asens.186
- Y. Ben Cheikh, Some results on quasi-monomiality, Appl. Math. Comput. 141 (2003), no. 1, 63-76. https://doi.org/10.1016/S0096-3003(02)00321-1
- Y. Ben Cheikh and H. Chaggara, Connection coeffcients between Boas-Buck polynomial sets, J. Math. Anal. Appl. 319 (2006), no. 2, 665-689. https://doi.org/10.1016/j.jmaa.2005.06.035
- R. P. Boas and R. C. Buck, Polynomials defined by generating relations, Amer. Math. Monthly 63 (1956), 626-632. https://doi.org/10.1080/00029890.1956.11988880
- F. Brackx, H. De Schepper, R. Lavicka, and V. Soucek, Gel'fand-Tsetlin procedure for the construction of orthogonal bases in Hermitean Clifford analysis, In: Simos TE, Psihoyios G, Tsitouras Ch, editors. Numerical analysis and applied mathematics-ICNAAM 2010, AIP Conference Proceedings (1281). Melville (NY): American Institute of Physics (AIP), (2010), 1508-1511.
- W. C. Brenke, On generating functions of polynomial systems, Amer. Math. Monthly 52 (1945), 297-301. https://doi.org/10.1080/00029890.1945.11991572
- L. Carlitz, A class of generating functions, SIAM J. Math. Anal. 8 (1977), no. 3, 518-532. https://doi.org/10.1137/0508039
- H. Chaggara and I. Lamiri, Linearization coeffcients for Boas-Buck polynomial sets, Appl. Math. Comput. 189 (2007), no. 2, 1533-1549. https://doi.org/10.1016/j.amc.2006.12.030
- F. A. Costabile and E. Longo, A determinantal approach to Appell polynomials, J. Comput. Appl. Math. 234 (2010), no. 5, 1528-1542. https://doi.org/10.1016/j.cam.2010.02.033
- G. Dattoli, Hermite-Bessel and Laguerre-Bessel functions: a by-product of the monomiality principle, in Advanced special functions and applications (Melfi, 1999), 147-164, Proc. Melfi Sch. Adv. Top. Math. Phys., 1, Aracne, Rome, 2000.
- M. E.-H. Ismail, On obtaining generating functions of Boas and Buck type for orthogonal polynomials, SIAM J. Math. Anal. 5 (1974), 202-208. https://doi.org/10.1137/0505022
- S. Khan and N. Raza, 2-iterated Appell polynomials and related numbers, Appl. Math. Comput. 219 (2013), no. 17, 9469-9483. https://doi.org/10.1016/j.amc.2013.03.082
- S. Khan and M. Riyasat, A determinantal approach to Sheffer-Appell polynomials via monomiality principle, J. Math. Anal. Appl. 421 (2015), no. 1, 806-829. https://doi.org/10.1016/j.jmaa.2014.07.044
- R. Lavicka, Canonical bases for sl(2;C)-modules of spherical monogenics in dimension 3, Arch. Math. Tomus. 46 (2010), 339-349.
- H. R. Malonek and M. I. Falcao, 3D-Mappings using monogenic functions, In: Simos TE, Psihoyios G, Tsitouras Ch, editors. Numerical analysis and applied mathematics-ICNAAM 2006. Weinheim: Wiley-VCH; (2006), 615-619.
- G. Polya and G. Szego, Problems and Theorems in Analysis. Vol. I, translated from the German by D. Aeppli, Springer-Verlag, New York, 1972.
- E. D. Rainville, Special Functions, reprint of 1960 first edition, Chelsea Publishing Co., Bronx, NY, 1971.
- S. Roman, The Umbral Calculus, Pure and Applied Mathematics, 111, Academic Press, Inc., New York, 1984.
- P. Salminen, Optimal stopping, Appell polynomials, and Wiener-Hopf factorization, Stochastics 83 (2011), no. 4-6, 611-622. https://doi.org/10.1080/17442508.2011.552722
- J. F. Steffensen, The poweroid, an extension of the mathematical notion of power, Acta Math. 73 (1941), 333-366. https://doi.org/10.1007/BF02392231
- S. Weinberg, The Quantum Theory of Fields. Vol. I, corrected reprint of the 1995 original, Cambridge University Press, Cambridge, 1996.
- Y. Yang and H. Youn, Appell polynomial sequences: a linear algebra approach, JP J. Algebra Number Theory Appl. 13 (2009), no. 1, 65-98.