DOI QR코드

DOI QR Code

FINDING RESULTS FOR CERTAIN RELATIVES OF THE APPELL POLYNOMIALS

  • Ali, Mahvish (Department of Mathematics Aligarh Muslim University) ;
  • Khan, Subuhi (Department of Mathematics Aligarh Muslim University)
  • Received : 2018.02.17
  • Accepted : 2018.08.16
  • Published : 2019.01.31

Abstract

In this article, a hybrid family of polynomials related to the Appell polynomials is introduced. Certain properties including quasimonomiality, differential equation and determinant definition of these polynomials are established. Further, applications of Carlitz's theorem to these polynomials and to certain other related polynomials are considered. Examples providing the corresponding results for some members belonging to this family are also considered.

Keywords

TABLE 1. Certain members belonging to the Appell family

E1BMAX_2019_v56n1_151_t0001.png 이미지

TABLE 2. Results for pHn(v)(x)

E1BMAX_2019_v56n1_151_t0002.png 이미지

TABLE 3. Results for pBn(a)(x)

E1BMAX_2019_v56n1_151_t0003.png 이미지

TABLE 4. Results for pEn(a)(x)

E1BMAX_2019_v56n1_151_t0004.png 이미지

References

  1. L. Aceto, H. R. Malonek, and G. Tomaz, A unified matrix approach to the representation of Appell polynomials, Integral Transforms Spec. Funct. 26 (2015), no. 6, 426-441. https://doi.org/10.1080/10652469.2015.1013035
  2. L. C. Andrews, Special Functions for Engineers and Applied Mathematicians, Macmillan Co., New York, 1985.
  3. M. Anshelevich, Appell polynomials and their relatives. III. Conditionally free theory, Illinois J. Math. 53 (2009), no. 1, 39-66. https://doi.org/10.1215/ijm/1264170838
  4. P. Appell, Sur une classe de polynomes, Ann. Sci. Ecole Norm. Sup. (2) 9 (1880), 119-144. https://doi.org/10.24033/asens.186
  5. Y. Ben Cheikh, Some results on quasi-monomiality, Appl. Math. Comput. 141 (2003), no. 1, 63-76. https://doi.org/10.1016/S0096-3003(02)00321-1
  6. Y. Ben Cheikh and H. Chaggara, Connection coeffcients between Boas-Buck polynomial sets, J. Math. Anal. Appl. 319 (2006), no. 2, 665-689. https://doi.org/10.1016/j.jmaa.2005.06.035
  7. R. P. Boas and R. C. Buck, Polynomials defined by generating relations, Amer. Math. Monthly 63 (1956), 626-632. https://doi.org/10.1080/00029890.1956.11988880
  8. F. Brackx, H. De Schepper, R. Lavicka, and V. Soucek, Gel'fand-Tsetlin procedure for the construction of orthogonal bases in Hermitean Clifford analysis, In: Simos TE, Psihoyios G, Tsitouras Ch, editors. Numerical analysis and applied mathematics-ICNAAM 2010, AIP Conference Proceedings (1281). Melville (NY): American Institute of Physics (AIP), (2010), 1508-1511.
  9. W. C. Brenke, On generating functions of polynomial systems, Amer. Math. Monthly 52 (1945), 297-301. https://doi.org/10.1080/00029890.1945.11991572
  10. L. Carlitz, A class of generating functions, SIAM J. Math. Anal. 8 (1977), no. 3, 518-532. https://doi.org/10.1137/0508039
  11. H. Chaggara and I. Lamiri, Linearization coeffcients for Boas-Buck polynomial sets, Appl. Math. Comput. 189 (2007), no. 2, 1533-1549. https://doi.org/10.1016/j.amc.2006.12.030
  12. F. A. Costabile and E. Longo, A determinantal approach to Appell polynomials, J. Comput. Appl. Math. 234 (2010), no. 5, 1528-1542. https://doi.org/10.1016/j.cam.2010.02.033
  13. G. Dattoli, Hermite-Bessel and Laguerre-Bessel functions: a by-product of the monomiality principle, in Advanced special functions and applications (Melfi, 1999), 147-164, Proc. Melfi Sch. Adv. Top. Math. Phys., 1, Aracne, Rome, 2000.
  14. M. E.-H. Ismail, On obtaining generating functions of Boas and Buck type for orthogonal polynomials, SIAM J. Math. Anal. 5 (1974), 202-208. https://doi.org/10.1137/0505022
  15. S. Khan and N. Raza, 2-iterated Appell polynomials and related numbers, Appl. Math. Comput. 219 (2013), no. 17, 9469-9483. https://doi.org/10.1016/j.amc.2013.03.082
  16. S. Khan and M. Riyasat, A determinantal approach to Sheffer-Appell polynomials via monomiality principle, J. Math. Anal. Appl. 421 (2015), no. 1, 806-829. https://doi.org/10.1016/j.jmaa.2014.07.044
  17. R. Lavicka, Canonical bases for sl(2;C)-modules of spherical monogenics in dimension 3, Arch. Math. Tomus. 46 (2010), 339-349.
  18. H. R. Malonek and M. I. Falcao, 3D-Mappings using monogenic functions, In: Simos TE, Psihoyios G, Tsitouras Ch, editors. Numerical analysis and applied mathematics-ICNAAM 2006. Weinheim: Wiley-VCH; (2006), 615-619.
  19. G. Polya and G. Szego, Problems and Theorems in Analysis. Vol. I, translated from the German by D. Aeppli, Springer-Verlag, New York, 1972.
  20. E. D. Rainville, Special Functions, reprint of 1960 first edition, Chelsea Publishing Co., Bronx, NY, 1971.
  21. S. Roman, The Umbral Calculus, Pure and Applied Mathematics, 111, Academic Press, Inc., New York, 1984.
  22. P. Salminen, Optimal stopping, Appell polynomials, and Wiener-Hopf factorization, Stochastics 83 (2011), no. 4-6, 611-622. https://doi.org/10.1080/17442508.2011.552722
  23. J. F. Steffensen, The poweroid, an extension of the mathematical notion of power, Acta Math. 73 (1941), 333-366. https://doi.org/10.1007/BF02392231
  24. S. Weinberg, The Quantum Theory of Fields. Vol. I, corrected reprint of the 1995 original, Cambridge University Press, Cambridge, 1996.
  25. Y. Yang and H. Youn, Appell polynomial sequences: a linear algebra approach, JP J. Algebra Number Theory Appl. 13 (2009), no. 1, 65-98.