FIGURE 1. A (5, 2)-free poset P with wdF (P ) =
참고문헌
- J.-O. Choi and D. B. West, Forbidden subposets for fractional weak discrepancy at most k, European J. Combin. 31 (2010), no. 8, 1957-1963. https://doi.org/10.1016/j.ejc.2010.05.004
- P. C. Fishburn, Interval orders and interval graphs, Wiley-Interscience Series in Discrete Mathematics, John Wiley & Sons, Ltd., Chichester, 1985.
- J. G. Gimbel and A. N. Trenk, On the weakness of an ordered set, SIAM J. Discrete Math. 11 (1998), no. 4, 655-663. https://doi.org/10.1137/S0895480197319628
- D. M. Howard and S. J. Young, When linear and weak discrepancy are equal, Discrete Math. 311 (2011), no. 4, 252-257. https://doi.org/10.1016/j.disc.2010.11.003
- A. Shuchat, R. Shull, and A. N. Trenk, Range of the fractional weak discrepancy function, Order 23 (2006), no. 1, 51-63. https://doi.org/10.1007/s11083-006-9030-4
- A. Shuchat, R. Shull, and A. N. Trenk, The fractional weak discrepancy of a partially ordered set, Discrete Appl. Math. 155 (2007), no. 17, 2227-2235. https://doi.org/10.1016/j.dam.2007.05.032
- A. Shuchat, R. Shull, and A. N. Trenk, Fractional weak discrepancy and interval orders, Discrete Appl. Math. 157 (2009), no. 8, 1873-1884. https://doi.org/10.1016/j.dam.2008.12.011
- A. Shuchat, R. Shull, and A. N. Trenk, Fractional weak discrepancy of posets and certain forbidden congurations, in The mathematics of preference, choice and order, 291-301, Stud. Choice Welf, Springer, Berlin, 2009.
- A. Shuchat, R. Shull, and A. N. Trenk, Fractional weak discrepancy and split semiorders, Discrete Appl. Math. 159 (2011), no. 7, 647-660. https://doi.org/10.1016/j.dam.2010.04.014
- A. Shuchat, R. Shull, and A. N. Trenk, The total weak discrepancy of a partially ordered set, Ars Math. Contemp. 4 (2011), no. 1, 95-109. https://doi.org/10.26493/1855-3974.159.1f8
- P. J. Tanenbaum, A. N. Trenk, and P. C. Fishburn, Linear discrepancy and weak discrepancy of partially ordered sets, Order 18 (2001), no. 3, 201-225. https://doi.org/10.1023/A:1012219816274
- A. N. Trenk, On k-weak orders: recognition and a tolerance result, Discrete Math. 181 (1998), no. 1-3, 223-237. https://doi.org/10.1016/S0012-365X(97)00038-1