• 제목/요약/키워드: fractional weak discrepancy

검색결과 1건 처리시간 0.014초

THE FRACTIONAL WEAK DISCREPANCY OF (M, 2)-FREE POSETS

  • Choi, Jeong-Ok
    • 대한수학회보
    • /
    • 제56권1호
    • /
    • pp.1-12
    • /
    • 2019
  • For a finite poset $P=(X,{\preceq})$ the fractional weak discrepancy of P, denoted $wd_F(P)$, is the minimum value t for which there is a function $f:X{\rightarrow}{\mathbb{R}}$ satisfying (1) $f(x)+1{\leq}f(y)$ whenever $x{\prec}y$ and (2) ${\mid}f(x)-f(y){\mid}{\leq}t$ whenever $x{\parallel}y$. In this paper, we determine the range of the fractional weak discrepancy of (M, 2)-free posets for $M{\geq}5$, which is a problem asked in [9]. More precisely, we showed that (1) the range of the fractional weak discrepancy of (M, 2)-free interval orders is $W=\{{\frac{r}{r+1}}:r{\in}{\mathbb{N}}{\cup}\{0\}\}{\cup}\{t{\in}{\mathbb{Q}}:1{\leq}t<M-3\}$ and (2) the range of the fractional weak discrepancy of (M, 2)-free non-interval orders is $\{t{\in}{\mathbb{Q}}:1{\leq}t<M-3\}$. The result is a generalization of a well-known result for semiorders and the main result for split semiorders of [9] since the family of semiorders is the family of (4, 2)-free posets.