참고문헌
- Akgoz, B. and Civalek, O. (2011), "Buckling analysis of cantilever carbon nanotubes using the strain gradient elasticity and modified couple stress theories", J. Computat. Theor. Nanosci., 8(9), 1821-1827. https://doi.org/10.1166/jctn.2011.1888
- Alibeigi, B., Beni, Y.T. and Mehralian, F. (2018), "On the thermal buckling of magneto-electro-elastic piezoelectric nanobeams", Eur. Phys. J. Plus, 133(3), 133. https://doi.org/10.1140/epjp/i2018-11954-7
- Ansari, R., Gholami, R. and Rouhi, H. (2015), "Size-dependent nonlinear forced vibration analysis of magneto-electro-thermoelastic Timoshenko nanobeams based upon the nonlocal elasticity theory", Compos. Struct., 126, 216-226. https://doi.org/10.1016/j.compstruct.2015.02.068
- Ansari, R., Torabi, J. and Faghih Shojaei, M. (2018), "An efficient numerical method for analyzing the thermal effects on the vibration of embedded single-walled carbon nanotubes based on the nonlocal shell model", Mech. Adv. Mater. Struct., 25(6), 500-511. https://doi.org/10.1080/15376494.2017.1285457
- Arani, A.G., Amir, S., Shajari, A. and Mozdianfard, M. (2012), "Electro-thermo-mechanical buckling of DWBNNTs embedded in bundle of CNTs using nonlocal piezoelasticity cylindrical shell theory", Compos. Part B: Eng., 43(2), 195-203. https://doi.org/10.1016/j.compositesb.2011.10.012
- Arefi, M. and Zenkour, A.M. (2017), "Wave propagation analysis of a functionally graded magneto-electro-elastic nanobeam rest on Visco-Pasternak foundation", Mech. Res. Commun., 79, 51-62. https://doi.org/10.1016/j.mechrescom.2017.01.004
- Baltacioglu, A.K., Akgoz, B. and Civalek, O . (2010), "Nonlinear static response of laminated composite plates by discrete singular convolution method", Compos. Struct., 93(1), 153-161. https://doi.org/10.1016/j.compstruct.2010.06.005
- Baltacioglu, A., Civalek, O., Akgoz, B. and Demir, F. (2011), "Large deflection analysis of laminated composite plates resting on nonlinear elastic foundations by the method of discrete singular convolution", Int. J. Press. Vessels Pip., 88(8-9), 290-300. https://doi.org/10.1016/j.ijpvp.2011.06.004
- Chowdhury, R., Adhikari, S., Wang, C. and Scarpa, F. (2010), "A molecular mechanics approach for the vibration of singlewalled carbon nanotubes", Computat. Mater. Sci., 48(4), 730-735. https://doi.org/10.1016/j.commatsci.2010.03.020
- Chowdhury, R., Adhikari, S. and Scarpa, F. (2011), "Vibration of ZnO nanotubes: a molecular mechanics approach", Appl. Phys. A, 102(2), 301-308. https://doi.org/10.1007/s00339-010-5995-3
- Civalek, O . and Demir, C. (2011), "Buckling and bending analyses of cantilever carbon nanotubes using the euler-bernoulli beam theory based on non-local continuum model", Asian J. Civil Eng., 12(5), 651-661.
- Ebrahimi, F. and Barati, M.R. (2016), "Static stability analysis of smart magneto-electro-elastic heterogeneous nanoplates embedded in an elastic medium based on a four-variable refined plate theory", Smart Mater. Struct., 25(10), 105014. https://doi.org/10.1088/0964-1726/25/10/105014
- Ebrahimi, F. and Dabbagh, A. (2017a), "Nonlocal strain gradient based wave dispersion behavior of smart rotating magnetoelectro-elastic nanoplates", Mater. Res. Express, 4(2), 025003. https://doi.org/10.1088/2053-1591/aa55b5
- Ebrahimi, F. and Dabbagh, A. (2017b), "On flexural wave propagation responses of smart FG magneto-electro-elastic nanoplates via nonlocal strain gradient theory", Compos. Struct., 162, 281-293. https://doi.org/10.1016/j.compstruct.2016.11.058
- Ebrahimi, F. and Dabbagh, A. (2018), "Wave dispersion characteristics of rotating heterogeneous magneto-electro-elastic nanobeams based on nonlocal strain gradient elasticity theory", J. Electromagnet. Waves Applicat., 32(2), 138-169. https://doi.org/10.1080/09205071.2017.1369903
- Ebrahimi, F. and Salari, E. (2015), "Nonlocal thermo-mechanical vibration analysis of functionally graded nanobeams in thermal environment", Acta Astronautica, 113, 29-50. https://doi.org/10.1016/j.actaastro.2015.03.031
- Ebrahimi, F., Barati, M.R. and Dabbagh, A. (2016a), "A nonlocal strain gradient theory for wave propagation analysis in temperature-dependent inhomogeneous nanoplates", Int. J. Eng. Sci., 107, 169-182. https://doi.org/10.1016/j.ijengsci.2016.07.008
- Ebrahimi, F., Barati, M.R. and Dabbagh, A. (2016b), "Wave dispersion characteristics of axially loaded magneto-electroelastic nanobeams", Appl. Phys. A, 122(11), 949. https://doi.org/10.1007/s00339-016-0465-1
- Eerenstein, W., Mathur, N. and Scott, J.F. (2006), "Multiferroic and magnetoelectric materials", Nature, 442(7104), 759-765. https://doi.org/10.1038/nature05023
- Ehyaei, J. and Daman, M. (2017), "Free vibration analysis of double walled carbon nanotubes embedded in an elastic medium with initial imperfection", Adv. Nano Res., Int. J., 5(2), 179-192.
- Eringen, A.C. (1972), "Linear theory of nonlocal elasticity and dispersion of plane waves", Int. J. Eng. Sci., 10(5), 425-435. https://doi.org/10.1016/0020-7225(72)90050-X
- Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803
- Farajpour, A., Rastgoo, A. and Farajpour, M. (2017), "Nonlinear buckling analysis of magneto-electro-elastic CNT-MT hybrid nanoshells based on the nonlocal continuum mechanics", Compos. Struct., 180, 179-191. https://doi.org/10.1016/j.compstruct.2017.07.100
- Ghorbanpour-Arani, A., Kolahdouzan, F. and Abdollahian, M. (2018), "Nonlocal buckling of embedded magnetoelectroelastic sandwich nanoplate using refined zigzag theory", Appl. Math. Mech., 39(4), 529-546. https://doi.org/10.1007/s10483-018-2319-8
- Gurses, M., Civalek, O ., Korkmaz, A.K. and Ersoy, H. (2009), "Free vibration analysis of symmetric laminated skew plates by discrete singular convolution technique based on first-order shear deformation theory", Int. J. Mnumer. Methods Eng., 79(3), 290-313. https://doi.org/10.1002/nme.2553
- Hu, Y.-G., Liew, K.M., Wang, Q., He, X. and Yakobson, B. (2008), "Nonlocal shell model for elastic wave propagation in singleand double-walled carbon nanotubes", J. Mech. Phys. Solids, 56(12), 3475-3485. https://doi.org/10.1016/j.jmps.2008.08.010
- Jamalpoor, A., Ahmadi-Savadkoohi, A., Hosseini, M. and Hosseini-Hashemi, S. (2017), "Free vibration and biaxial buckling analysis of double magneto-electro-elastic nanoplatesystems coupled by a visco-Pasternak medium via nonlocal elasticity theory", Eur. J. Mech.-A/Solids, 63, 84-98. https://doi.org/10.1016/j.euromechsol.2016.12.002
- Kamali, M., Shamsi, M. and Saidi, A. (2018), "Postbuckling of magneto-electro-elastic CNT-MT composite nanotubes resting on a nonlinear elastic medium in a non-uniform thermal environment", Eur. Phys. J. Plus, 133(3), 110. https://doi.org/10.1140/epjp/i2018-11942-y
- Ke, L., Wang, Y. and Reddy, J. (2014), "Thermo-electromechanical vibration of size-dependent piezoelectric cylindrical nanoshells under various boundary conditions", Compos. Struct., 116, 626-636. https://doi.org/10.1016/j.compstruct.2014.05.048
- Kheibari, F. and Beni, Y.T. (2017), "Size dependent electromechanical vibration of single-walled piezoelectric nanotubes using thin shell model", Mater. Des., 114, 572-583. https://doi.org/10.1016/j.matdes.2016.10.041
- Li, L., Li, X. and Hu, Y. (2016), "Free vibration analysis of nonlocal strain gradient beams made of functionally graded material", Int. J. Eng. Sci., 102, 77-92. https://doi.org/10.1016/j.ijengsci.2016.02.010
- Li, L., Tang, H. and Hu, Y. (2018), "The effect of thickness on the mechanics of nanobeams", Int. J. Eng. Sci., 123, 81-91. https://doi.org/10.1016/j.ijengsci.2017.11.021
- Liew, K.M. and Wang, Q. (2007), "Analysis of wave propagation in carbon nanotubes via elastic shell theories", Int. J. Eng. Sci., 45(2-8), 227-241. https://doi.org/10.1016/j.ijengsci.2007.04.001
- Ma, L.-H., Ke, L.-L., Wang, Y.-Z. and Wang, Y.-S. (2017), "Wave propagation in magneto-electro-elastic nanobeams via two nonlocal beam models", Phys. E: Low-dimensional Syst. Nanostruct., 86, 253-261. https://doi.org/10.1016/j.physe.2016.10.036
- Ma, L., Ke, L., Reddy, J., Yang, J., Kitipornchai, S. and Wang, Y. (2018), "Wave propagation characteristics in magneto-electroelastic nanoshells using nonlocal strain gradient theory", Compos. Struct., 199, 10-23. https://doi.org/10.1016/j.compstruct.2018.05.061
- Mercan, K. and Civalek, O . (2016), "DSC method for buckling analysis of boron nitride nanotube (BNNT) surrounded by an elastic matrix", Compos. Struct., 143, 300-309. https://doi.org/10.1016/j.compstruct.2016.02.040
- Mercan, K. and Civalek, O . (2017), "Buckling analysis of Silicon carbide nanotubes (SiCNTs) with surface effect and nonlocal elasticity using the method of HDQ", Compos. Part B: Eng., 114, 34-45. https://doi.org/10.1016/j.compositesb.2017.01.067
- Mohammadi, K., Rajabpour, A. and Ghadiri, M. (2018), "Calibration of nonlocal strain gradient shell model for vibration analysis of a CNT conveying viscous fluid using molecular dynamics simulation", Computat. Mater. Sci., 148, 104-115. https://doi.org/10.1016/j.commatsci.2018.02.036
- Nan, C.-W. (1994), "Magnetoelectric effect in composites of piezoelectric and piezomagnetic phases", Phys. Rev. B, 50(9), 6082. https://doi.org/10.1103/PhysRevB.50.6082
- Nejad, M.Z., Hadi, A. and Farajpour, A. (2017), "Consistent couple-stress theory for free vibration analysis of Euler-Bernoulli nano-beams made of arbitrary bi-directional functionally graded materials", Struct. Eng. Mech., Int. J., 63(2), 161-169.
- Reddy, J. (2007), "Nonlocal theories for bending, buckling and vibration of beams", Int. J. Eng. Sci., 45(2-8), 288-307. https://doi.org/10.1016/j.ijengsci.2007.04.004
- Sahmani, S. and Aghdam, M. (2018), "Nonlocal strain gradient shell model for axial buckling and postbuckling analysis of magneto-electro-elastic composite nanoshells", Compos. Part B: Eng., 132, 258-274. https://doi.org/10.1016/j.compositesb.2017.09.004
- Shooshtari, A. and Razavi, S. (2015), "Linear and nonlinear free vibration of a multilayered magneto-electro-elastic doublycurved shell on elastic foundation", Compos. Part B: Eng., 78, 95-108. https://doi.org/10.1016/j.compositesb.2015.03.070
- Spaldin, N.A. and Fiebig, M. (2005), "The renaissance of magnetoelectric multiferroics", Science, 309(5733), 391-392. https://doi.org/10.1126/science.1113357
- Tsiatas, G.C. (2014), "A new efficient method to evaluate exact stiffness and mass matrices of non-uniform beams resting on an elastic foundation", Arch. Appl. Mech., 84(5), 615-623. https://doi.org/10.1007/s00419-014-0820-7
- Wang, Q. (2005), "Wave propagation in carbon nanotubes via nonlocal continuum mechanics", J. Appl. Phys., 98(12), 124301. https://doi.org/10.1063/1.2141648
- Wang, Q., Shao, D. and Qin, B. (2018), "A simple first-order shear deformation shell theory for vibration analysis of composite laminated open cylindrical shells with general boundary conditions", Compos. Struct., 184, 211-232. https://doi.org/10.1016/j.compstruct.2017.09.070
- Wu, C.-P. and Tsai, Y.-H. (2010), "Dynamic responses of functionally graded magneto-electro-elastic shells with closedcircuit surface conditions using the method of multiple scales", Eur. J. Mech.-A/Solids, 29(2), 166-181. https://doi.org/10.1016/j.euromechsol.2009.09.004
- Yang, F., Chong, A., Lam, D.C.C. and Tong, P. (2002), "Couple stress based strain gradient theory for elasticity", Int. J. Solids Struct., 39(10), 2731-2743. https://doi.org/10.1016/S0020-7683(02)00152-X
- Zeighampour, H., Beni, Y.T. and Karimipour, I. (2017), "Wave propagation in double-walled carbon nanotube conveying fluid considering slip boundary condition and shell model based on nonlocal strain gradient theory", Microfluidics Nanofluidics, 21(5), 85. https://doi.org/10.1007/s10404-017-1918-3
- Zhu, X. and Li, L. (2017a), "Closed form solution for a nonlocal strain gradient rod in tension", Int. J. Eng. Sci., 119, 16-28. https://doi.org/10.1016/j.ijengsci.2017.06.019
- Zhu, X. and Li, L. (2017b), "Longitudinal and torsional vibrations of size-dependent rods via nonlocal integral elasticity", Int. J. Mech. Sci., 133, 639-650. https://doi.org/10.1016/j.ijmecsci.2017.09.030
- Zhu, X. and Li, L. (2017c), "On longitudinal dynamics of nanorods", Int. J. Eng. Sci., 120, 129-145. https://doi.org/10.1016/j.ijengsci.2017.08.003
- Zhu, X. and Li, L. (2017d), "Twisting statics of functionally graded nanotubes using Eringen's nonlocal integral model", Compos. Struct., 178, 87-96. https://doi.org/10.1016/j.compstruct.2017.06.067
피인용 문헌
- On the nonlocality of bilateral vibrations of single-layered membranes from vertically aligned double-walled carbon nanotubes vol.95, pp.3, 2019, https://doi.org/10.1088/1402-4896/ab43b6