DOI QR코드

DOI QR Code

Eringen's nonlocal elasticity theory for wave propagation analysis of magneto-electro-elastic nanotubes

  • Ebrahimi, Farzad (Department of Mechanical Engineering, Faculty of Engineering, Imam Khomeini International University) ;
  • Dehghan, M. (Department of Mechanical Engineering, Faculty of Engineering, Imam Khomeini International University) ;
  • Seyfi, Ali (Department of Mechanical Engineering, Faculty of Engineering, Imam Khomeini International University)
  • Received : 2018.09.22
  • Accepted : 2018.12.06
  • Published : 2019.01.25

Abstract

In this article, wave propagation characteristics in magneto-electro-elastic (MEE) nanotube considering shell model is studied in the framework nonlocal theory. To account for the small-scale effects, the Eringen's nonlocal elasticity theory of is applied. Nonlocal governing equations of MEE nanotube have been derived utilizing Hamilton's principle. The results of this investigation have been accredited by comparing them of previous studies. An analytical solution of governing equations is used to obtain phase velocities and wave frequencies. The influences of different parameters, such as different mode, nonlocal parameter, length parameter, geometry, magnetic field and electric field on wave propagation responses of MEE nanotube are expressed in detail.

Keywords

References

  1. Akgoz, B. and Civalek, O. (2011), "Buckling analysis of cantilever carbon nanotubes using the strain gradient elasticity and modified couple stress theories", J. Computat. Theor. Nanosci., 8(9), 1821-1827. https://doi.org/10.1166/jctn.2011.1888
  2. Alibeigi, B., Beni, Y.T. and Mehralian, F. (2018), "On the thermal buckling of magneto-electro-elastic piezoelectric nanobeams", Eur. Phys. J. Plus, 133(3), 133. https://doi.org/10.1140/epjp/i2018-11954-7
  3. Ansari, R., Gholami, R. and Rouhi, H. (2015), "Size-dependent nonlinear forced vibration analysis of magneto-electro-thermoelastic Timoshenko nanobeams based upon the nonlocal elasticity theory", Compos. Struct., 126, 216-226. https://doi.org/10.1016/j.compstruct.2015.02.068
  4. Ansari, R., Torabi, J. and Faghih Shojaei, M. (2018), "An efficient numerical method for analyzing the thermal effects on the vibration of embedded single-walled carbon nanotubes based on the nonlocal shell model", Mech. Adv. Mater. Struct., 25(6), 500-511. https://doi.org/10.1080/15376494.2017.1285457
  5. Arani, A.G., Amir, S., Shajari, A. and Mozdianfard, M. (2012), "Electro-thermo-mechanical buckling of DWBNNTs embedded in bundle of CNTs using nonlocal piezoelasticity cylindrical shell theory", Compos. Part B: Eng., 43(2), 195-203. https://doi.org/10.1016/j.compositesb.2011.10.012
  6. Arefi, M. and Zenkour, A.M. (2017), "Wave propagation analysis of a functionally graded magneto-electro-elastic nanobeam rest on Visco-Pasternak foundation", Mech. Res. Commun., 79, 51-62. https://doi.org/10.1016/j.mechrescom.2017.01.004
  7. Baltacioglu, A.K., Akgoz, B. and Civalek, O . (2010), "Nonlinear static response of laminated composite plates by discrete singular convolution method", Compos. Struct., 93(1), 153-161. https://doi.org/10.1016/j.compstruct.2010.06.005
  8. Baltacioglu, A., Civalek, O., Akgoz, B. and Demir, F. (2011), "Large deflection analysis of laminated composite plates resting on nonlinear elastic foundations by the method of discrete singular convolution", Int. J. Press. Vessels Pip., 88(8-9), 290-300. https://doi.org/10.1016/j.ijpvp.2011.06.004
  9. Chowdhury, R., Adhikari, S., Wang, C. and Scarpa, F. (2010), "A molecular mechanics approach for the vibration of singlewalled carbon nanotubes", Computat. Mater. Sci., 48(4), 730-735. https://doi.org/10.1016/j.commatsci.2010.03.020
  10. Chowdhury, R., Adhikari, S. and Scarpa, F. (2011), "Vibration of ZnO nanotubes: a molecular mechanics approach", Appl. Phys. A, 102(2), 301-308. https://doi.org/10.1007/s00339-010-5995-3
  11. Civalek, O . and Demir, C. (2011), "Buckling and bending analyses of cantilever carbon nanotubes using the euler-bernoulli beam theory based on non-local continuum model", Asian J. Civil Eng., 12(5), 651-661.
  12. Ebrahimi, F. and Barati, M.R. (2016), "Static stability analysis of smart magneto-electro-elastic heterogeneous nanoplates embedded in an elastic medium based on a four-variable refined plate theory", Smart Mater. Struct., 25(10), 105014. https://doi.org/10.1088/0964-1726/25/10/105014
  13. Ebrahimi, F. and Dabbagh, A. (2017a), "Nonlocal strain gradient based wave dispersion behavior of smart rotating magnetoelectro-elastic nanoplates", Mater. Res. Express, 4(2), 025003. https://doi.org/10.1088/2053-1591/aa55b5
  14. Ebrahimi, F. and Dabbagh, A. (2017b), "On flexural wave propagation responses of smart FG magneto-electro-elastic nanoplates via nonlocal strain gradient theory", Compos. Struct., 162, 281-293. https://doi.org/10.1016/j.compstruct.2016.11.058
  15. Ebrahimi, F. and Dabbagh, A. (2018), "Wave dispersion characteristics of rotating heterogeneous magneto-electro-elastic nanobeams based on nonlocal strain gradient elasticity theory", J. Electromagnet. Waves Applicat., 32(2), 138-169. https://doi.org/10.1080/09205071.2017.1369903
  16. Ebrahimi, F. and Salari, E. (2015), "Nonlocal thermo-mechanical vibration analysis of functionally graded nanobeams in thermal environment", Acta Astronautica, 113, 29-50. https://doi.org/10.1016/j.actaastro.2015.03.031
  17. Ebrahimi, F., Barati, M.R. and Dabbagh, A. (2016a), "A nonlocal strain gradient theory for wave propagation analysis in temperature-dependent inhomogeneous nanoplates", Int. J. Eng. Sci., 107, 169-182. https://doi.org/10.1016/j.ijengsci.2016.07.008
  18. Ebrahimi, F., Barati, M.R. and Dabbagh, A. (2016b), "Wave dispersion characteristics of axially loaded magneto-electroelastic nanobeams", Appl. Phys. A, 122(11), 949. https://doi.org/10.1007/s00339-016-0465-1
  19. Eerenstein, W., Mathur, N. and Scott, J.F. (2006), "Multiferroic and magnetoelectric materials", Nature, 442(7104), 759-765. https://doi.org/10.1038/nature05023
  20. Ehyaei, J. and Daman, M. (2017), "Free vibration analysis of double walled carbon nanotubes embedded in an elastic medium with initial imperfection", Adv. Nano Res., Int. J., 5(2), 179-192.
  21. Eringen, A.C. (1972), "Linear theory of nonlocal elasticity and dispersion of plane waves", Int. J. Eng. Sci., 10(5), 425-435. https://doi.org/10.1016/0020-7225(72)90050-X
  22. Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803
  23. Farajpour, A., Rastgoo, A. and Farajpour, M. (2017), "Nonlinear buckling analysis of magneto-electro-elastic CNT-MT hybrid nanoshells based on the nonlocal continuum mechanics", Compos. Struct., 180, 179-191. https://doi.org/10.1016/j.compstruct.2017.07.100
  24. Ghorbanpour-Arani, A., Kolahdouzan, F. and Abdollahian, M. (2018), "Nonlocal buckling of embedded magnetoelectroelastic sandwich nanoplate using refined zigzag theory", Appl. Math. Mech., 39(4), 529-546. https://doi.org/10.1007/s10483-018-2319-8
  25. Gurses, M., Civalek, O ., Korkmaz, A.K. and Ersoy, H. (2009), "Free vibration analysis of symmetric laminated skew plates by discrete singular convolution technique based on first-order shear deformation theory", Int. J. Mnumer. Methods Eng., 79(3), 290-313. https://doi.org/10.1002/nme.2553
  26. Hu, Y.-G., Liew, K.M., Wang, Q., He, X. and Yakobson, B. (2008), "Nonlocal shell model for elastic wave propagation in singleand double-walled carbon nanotubes", J. Mech. Phys. Solids, 56(12), 3475-3485. https://doi.org/10.1016/j.jmps.2008.08.010
  27. Jamalpoor, A., Ahmadi-Savadkoohi, A., Hosseini, M. and Hosseini-Hashemi, S. (2017), "Free vibration and biaxial buckling analysis of double magneto-electro-elastic nanoplatesystems coupled by a visco-Pasternak medium via nonlocal elasticity theory", Eur. J. Mech.-A/Solids, 63, 84-98. https://doi.org/10.1016/j.euromechsol.2016.12.002
  28. Kamali, M., Shamsi, M. and Saidi, A. (2018), "Postbuckling of magneto-electro-elastic CNT-MT composite nanotubes resting on a nonlinear elastic medium in a non-uniform thermal environment", Eur. Phys. J. Plus, 133(3), 110. https://doi.org/10.1140/epjp/i2018-11942-y
  29. Ke, L., Wang, Y. and Reddy, J. (2014), "Thermo-electromechanical vibration of size-dependent piezoelectric cylindrical nanoshells under various boundary conditions", Compos. Struct., 116, 626-636. https://doi.org/10.1016/j.compstruct.2014.05.048
  30. Kheibari, F. and Beni, Y.T. (2017), "Size dependent electromechanical vibration of single-walled piezoelectric nanotubes using thin shell model", Mater. Des., 114, 572-583. https://doi.org/10.1016/j.matdes.2016.10.041
  31. Li, L., Li, X. and Hu, Y. (2016), "Free vibration analysis of nonlocal strain gradient beams made of functionally graded material", Int. J. Eng. Sci., 102, 77-92. https://doi.org/10.1016/j.ijengsci.2016.02.010
  32. Li, L., Tang, H. and Hu, Y. (2018), "The effect of thickness on the mechanics of nanobeams", Int. J. Eng. Sci., 123, 81-91. https://doi.org/10.1016/j.ijengsci.2017.11.021
  33. Liew, K.M. and Wang, Q. (2007), "Analysis of wave propagation in carbon nanotubes via elastic shell theories", Int. J. Eng. Sci., 45(2-8), 227-241. https://doi.org/10.1016/j.ijengsci.2007.04.001
  34. Ma, L.-H., Ke, L.-L., Wang, Y.-Z. and Wang, Y.-S. (2017), "Wave propagation in magneto-electro-elastic nanobeams via two nonlocal beam models", Phys. E: Low-dimensional Syst. Nanostruct., 86, 253-261. https://doi.org/10.1016/j.physe.2016.10.036
  35. Ma, L., Ke, L., Reddy, J., Yang, J., Kitipornchai, S. and Wang, Y. (2018), "Wave propagation characteristics in magneto-electroelastic nanoshells using nonlocal strain gradient theory", Compos. Struct., 199, 10-23. https://doi.org/10.1016/j.compstruct.2018.05.061
  36. Mercan, K. and Civalek, O . (2016), "DSC method for buckling analysis of boron nitride nanotube (BNNT) surrounded by an elastic matrix", Compos. Struct., 143, 300-309. https://doi.org/10.1016/j.compstruct.2016.02.040
  37. Mercan, K. and Civalek, O . (2017), "Buckling analysis of Silicon carbide nanotubes (SiCNTs) with surface effect and nonlocal elasticity using the method of HDQ", Compos. Part B: Eng., 114, 34-45. https://doi.org/10.1016/j.compositesb.2017.01.067
  38. Mohammadi, K., Rajabpour, A. and Ghadiri, M. (2018), "Calibration of nonlocal strain gradient shell model for vibration analysis of a CNT conveying viscous fluid using molecular dynamics simulation", Computat. Mater. Sci., 148, 104-115. https://doi.org/10.1016/j.commatsci.2018.02.036
  39. Nan, C.-W. (1994), "Magnetoelectric effect in composites of piezoelectric and piezomagnetic phases", Phys. Rev. B, 50(9), 6082. https://doi.org/10.1103/PhysRevB.50.6082
  40. Nejad, M.Z., Hadi, A. and Farajpour, A. (2017), "Consistent couple-stress theory for free vibration analysis of Euler-Bernoulli nano-beams made of arbitrary bi-directional functionally graded materials", Struct. Eng. Mech., Int. J., 63(2), 161-169.
  41. Reddy, J. (2007), "Nonlocal theories for bending, buckling and vibration of beams", Int. J. Eng. Sci., 45(2-8), 288-307. https://doi.org/10.1016/j.ijengsci.2007.04.004
  42. Sahmani, S. and Aghdam, M. (2018), "Nonlocal strain gradient shell model for axial buckling and postbuckling analysis of magneto-electro-elastic composite nanoshells", Compos. Part B: Eng., 132, 258-274. https://doi.org/10.1016/j.compositesb.2017.09.004
  43. Shooshtari, A. and Razavi, S. (2015), "Linear and nonlinear free vibration of a multilayered magneto-electro-elastic doublycurved shell on elastic foundation", Compos. Part B: Eng., 78, 95-108. https://doi.org/10.1016/j.compositesb.2015.03.070
  44. Spaldin, N.A. and Fiebig, M. (2005), "The renaissance of magnetoelectric multiferroics", Science, 309(5733), 391-392. https://doi.org/10.1126/science.1113357
  45. Tsiatas, G.C. (2014), "A new efficient method to evaluate exact stiffness and mass matrices of non-uniform beams resting on an elastic foundation", Arch. Appl. Mech., 84(5), 615-623. https://doi.org/10.1007/s00419-014-0820-7
  46. Wang, Q. (2005), "Wave propagation in carbon nanotubes via nonlocal continuum mechanics", J. Appl. Phys., 98(12), 124301. https://doi.org/10.1063/1.2141648
  47. Wang, Q., Shao, D. and Qin, B. (2018), "A simple first-order shear deformation shell theory for vibration analysis of composite laminated open cylindrical shells with general boundary conditions", Compos. Struct., 184, 211-232. https://doi.org/10.1016/j.compstruct.2017.09.070
  48. Wu, C.-P. and Tsai, Y.-H. (2010), "Dynamic responses of functionally graded magneto-electro-elastic shells with closedcircuit surface conditions using the method of multiple scales", Eur. J. Mech.-A/Solids, 29(2), 166-181. https://doi.org/10.1016/j.euromechsol.2009.09.004
  49. Yang, F., Chong, A., Lam, D.C.C. and Tong, P. (2002), "Couple stress based strain gradient theory for elasticity", Int. J. Solids Struct., 39(10), 2731-2743. https://doi.org/10.1016/S0020-7683(02)00152-X
  50. Zeighampour, H., Beni, Y.T. and Karimipour, I. (2017), "Wave propagation in double-walled carbon nanotube conveying fluid considering slip boundary condition and shell model based on nonlocal strain gradient theory", Microfluidics Nanofluidics, 21(5), 85. https://doi.org/10.1007/s10404-017-1918-3
  51. Zhu, X. and Li, L. (2017a), "Closed form solution for a nonlocal strain gradient rod in tension", Int. J. Eng. Sci., 119, 16-28. https://doi.org/10.1016/j.ijengsci.2017.06.019
  52. Zhu, X. and Li, L. (2017b), "Longitudinal and torsional vibrations of size-dependent rods via nonlocal integral elasticity", Int. J. Mech. Sci., 133, 639-650. https://doi.org/10.1016/j.ijmecsci.2017.09.030
  53. Zhu, X. and Li, L. (2017c), "On longitudinal dynamics of nanorods", Int. J. Eng. Sci., 120, 129-145. https://doi.org/10.1016/j.ijengsci.2017.08.003
  54. Zhu, X. and Li, L. (2017d), "Twisting statics of functionally graded nanotubes using Eringen's nonlocal integral model", Compos. Struct., 178, 87-96. https://doi.org/10.1016/j.compstruct.2017.06.067

Cited by

  1. On the nonlocality of bilateral vibrations of single-layered membranes from vertically aligned double-walled carbon nanotubes vol.95, pp.3, 2019, https://doi.org/10.1088/1402-4896/ab43b6