References
- Altunsaray, E. and Bayer, I. (2014), "Buckling of symmetrically laminated quasi-isotropic thin rectangular plate", Steel Compos. Struct., Int. J., 17(3), 305-320. https://doi.org/10.12989/scs.2014.17.3.305
- Bergman, L.A., Hall, J.K., Lueschen, G.G.G. and McFarland, D.M. (1993), "Dynamic Green's functions for Levy plates", J. Sound Vib., 162, 281-310. https://doi.org/10.1006/jsvi.1993.1119
- Bouguenina, O., Belakhdar, K., Tounsi, A. and Adda, E.A. (2015), "Numerical analysis of FGM plates with variable thickness subjected to thermal buckling", Steel Compos. Struct., Int. J., 19(3), 679-695. https://doi.org/10.12989/scs.2015.19.3.679
- Chakraverty, S. and Pradhan, K.K. (2014), "Free vibration of exponential functionally graded rectangular plates in thermal environment with general boundary conditions", Aerosp. Sci. Technol., 36, 132-156. https://doi.org/10.1016/j.ast.2014.04.005
- Chegenizadeh, A., Ghadimi, B., Nikraz, H. and Simsek, M. (2014), "A novel two-dimensional approach to modelling functionally graded beams resting on a soil medium", Struct. Eng. Mech., Int. J., 51(5), 727-741. https://doi.org/10.12989/sem.2014.51.5.727
- Chen, J.T., Liao, H.Z. and Lee, W.M. (2009), "An analytical approach for the Green's functions of biharmonic problems with circular and annular domains", J. Mech., 25, 59-74. https://doi.org/10.1017/S1727719100003609
- Chen, D.Q., Sun, D.L. and Li, X.F. (2017), "Surface effects on resonance frequencies of axiaaly functionally graded Timoshenko nanocantilevers with attached nanoparticle", Compos. Struct., 173, 116-126. https://doi.org/10.1016/j.compstruct.2017.04.006
- Duffy, D.J. (2001), Green's Functions with Applications, CRC Press, USA.
- Ebrahimi, F. and Habibi, S. (2016), "Deflection and vibration analysis of higher-order shear deformable compositionally graded porous plate", Steel Compos. Struct., Int. J., 20(1), 205-225. https://doi.org/10.12989/scs.2016.20.1.205
- Fekrar, A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2014), "A new five unknown refined theory based on neutral surface position for bending analysis of exponential graded plates", Meccanica, 49, 795-810. https://doi.org/10.1007/s11012-013-9827-3
- Gray, L.J., Kaplan, T., Richardson, J.D. and Paulino, G.H. (2003), "Green's functions and boundary integral analysis for exponentially graded materials: heat conduction", J. Appl. Mech., 70, 543-549. https://doi.org/10.1115/1.1485753
- Greenberg, M. (1971), Application of Green's Functions in Science and Engineering, Prentice Hall, USA.
- Gupta, A.K., Saini, M., Singh, S. and Kumar, R. (2014), "Forced vibrations of non-homogeneous rectangular plate of linearly varying thickness", J. Vib. Control, 20, 876-884. https://doi.org/10.1177/1077546312466883
- Haberman, R. (1987), Elementary Applied Partial Differential Equations with Fourier Series and Boundary Value Problems, Second Edition, Prentice Hall, USA.
- Helal, W.M.K. and Shi, D. (2014), "Optimum material gradient for functionally graded rectangular plate with finite element method", Indian J. Mater. Sci., 2014, 501935.
- Hozhabrossadati, S.M. and Aftabi Sani, A. (2015), "Deformation of Euler-Bernoulli beams by means of modified Green's function: Application of Fredholm Alternative Theorem", Mechanics Based Design of Structures and Machines, 43, 277-293. https://doi.org/10.1080/15397734.2014.960089
- Hozhabrossadati, S.M. and Aftabi Sani, A. (2016), "Application of Green's function for constructing influence lines", Journal of Engineering Mechanics ASCE, 142, 04015097. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001016
- Hozhabrossadati, S.M., Aftabi Sani, A., Mehri, B. and Mofid, M. (2015), "Green's function for uniform Euler-Bernoulli beams at resonant condition: Introduction of Fredholm Alternative Theorem", Appl. Math. Model., 39, 3366-3379. https://doi.org/10.1016/j.apm.2014.11.038
- Huang, Z.Y., Lu, C.F. and Chen, W.Q. (2008), "Benchmark solutions for functionally graded thick plates resting on Winkler-Pasternak elastic foundations", Compos. Struct., 85, 95-104. https://doi.org/10.1016/j.compstruct.2007.10.010
- Kashtalyan, M. (2004), "Three-dimensional elasticity solution for bending of functionally graded rectangular plates", Eur. J. Mech. A/Solids, 23, 853-864. https://doi.org/10.1016/j.euromechsol.2004.04.002
- Kerr, A.D. and El-Sibaie, M.A. (1989), "Green's functions for continuously supported plates", J. Appl. Math. Phys., 40, 15-38.
- Khayat, M., Poorveis, D. and Moradi, S. (2017), "Buckling analysis of functionally graded truncated conical shells under external displacement-dependent pressure", Steel Compos. Struct., Int. J., 23, 1-16. https://doi.org/10.12989/scs.2017.23.1.001
- Kiani, Y. and Eslami, M.R. (2013), "An exact solution for thermal buckling of annular FGM plates on an elastic medium", Composites Part B, 45, 101-110. https://doi.org/10.1016/j.compositesb.2012.09.034
- Korn, G.A. and Korn, T.M. (1968), Mathematical Handbook for Scientists and Engineers, Second Edition, McGraw-Hill, USA.
- Kukla, S. (1998), "Application of Green's function in free vibration analysis of a system of line connected rectangular plates", J. Sound Vib., 217, 1-15. https://doi.org/10.1006/jsvi.1998.1745
- Kukla, S. and Rychlewska, J. (2013), "Free vibration analysis of functionally graded beams", J. Appl. Math. Computat. Mech., 12, 39-44. https://doi.org/10.17512/jamcm.2013.2.05
- Kukla, S. and Szewczyk, M. (2007), "Frequency analysis of annular plates with elastic concentric supports by Green's function method", J. Sound Vib., 300, 387-393. https://doi.org/10.1016/j.jsv.2006.04.046
- Lal, R. and Alhawat, N. (2015a), "Buckling and vibration of functionally graded non-uniform circular plates resting on Winkler foundation", Latin Am. J. Solids Struct., 12, 2231-2258. https://doi.org/10.1590/1679-78251595
- Lal, R. and Ahlawat, N. (2015b), "Axisymmetric vibration and buckling analysis of functionally graded circular plates via differential transform method", Eur. J. Mech. A/Solids, 52, 85-94. https://doi.org/10.1016/j.euromechsol.2015.02.004
- Lal, R. and Sharma, S. (2004), "Axisymmetric vibrations of nonhomogeneous polar orthotropic annular plates of variable thickness", J. Sound Vib., 272, 245-265. https://doi.org/10.1016/S0022-460X(03)00329-8
- Lam, K.Y., Wang, C.M. and He, X.Q. (2000), "Canonical exact solutions for Levy-plates on two-parameter foundation using Green's function", Eng. Struct., 22, 364-378. https://doi.org/10.1016/S0141-0296(98)00116-3
- Li, S. and Yuan, H. (2012), "Green quasifunction method for free vibration of clamped thin plates", Acta Mechanica Solida Sinica, 25, 37-45. https://doi.org/10.1016/S0894-9166(12)60004-4
- Li, X.F., Kang, Y.A. and Wu, J.X. (2013), "Exact frequency equation of free vibration of exponentially functionally graded beams", Appl. Acoust., 74, 413-420. https://doi.org/10.1016/j.apacoust.2012.08.003
- Liu, Y., Xiao, J. and Shu, D. (2014), "Free vibration of exponential functionally graded beams with single delamination", Procedia Eng., 75, 164-168. https://doi.org/10.1016/j.proeng.2013.11.041
- Mansouri, M.H. and Shariyat, M. (2015), "Biaxial Thermomechanical buckling of orthotropic auxetic FGM plates with temperature and moisture dependent material properties on elastic foundations", Compos. Part B, 83, 88-104. https://doi.org/10.1016/j.compositesb.2015.08.030
- Mazzei, Jr. A.J. and Scott, R.A. (2013), "On the effects of nonhomogeneous materials on the vibrations and static stability of tapered shafts", J. Vib. Control, 19, 771-786. https://doi.org/10.1177/1077546312438429
- Nicholson, J.W. and Bergman, L.A. (1985), "On the efficacy of the modal series representation for the Green's functions of vibrating continuous structures", J. Sound Vib., 98, 299-304. https://doi.org/10.1016/0022-460X(85)90393-1
- Rao, S. (2011), The Finite Element Method in Engineering, Fifth Edition, Elsevier, USA.
- Ravasoo, A. (2014), "Interaction of bursts in exponentially graded materials characterized by parametric plots", Wave Motion, 51, 758-767. https://doi.org/10.1016/j.wavemoti.2014.01.006
- Rezaiee-Pajand, M. and Hozhabrossadati, S.M. (2016), "Analytical and numerical method for free vibration of doubleaxially functionally graded beams", Compos. Struct., 152, 488-498. https://doi.org/10.1016/j.compstruct.2016.05.003
- Rezaiee-Pajand, M., Masoodi, A. and Alepaighambar, A. (2018a), "Lateral-torsional buckling of functionally graded tapered Ibeams considering lateral bracing", Steel Compos. Struct., Int. J., 28(4), 403-414.
- Rezaiee-Pajand, M., Masoodi, A. and Arabi, E. (2018b), "Geometrically nonlinear analysis of FG doubly-curved and hyperbolical shells via laminated by new element", Steel Compos. Struct., Int. J., 28(3), 389-401.
- Riley, K.F., Hobson, M.P. and Bence, S.J. (2006), Mathematical Methods for Physics and Engineering, Third Edition, Cambridge University Press, UK.
- Shariyat, M. and Alipour, M.M. (2011), "Differential transform vibration and modal stress analyses of circular plates made of two-directional functionally graded materials resting on elastic foundations", Arch. Appl. Mech., 81, 1289-1306. https://doi.org/10.1007/s00419-010-0484-x
- Stanisic, M.M. and Laffayeta, W. (1979), "On the response of thin elastic plate by means of Green's functions", Ingenieur-Archiv, 48, 279-288. https://doi.org/10.1007/BF00586068
- Sun, L. (2001), "Time-harmonic elastodynamic Green functions of plates for line loads", J. Sound Vib., 246, 337-348. https://doi.org/10.1006/jsvi.2001.3652
- Szilard, R. (2004), Theories and Applications of Plate Structures, John Wiley and Sons, NJ, USA.
- Tang, A.Y., Wu, J.X., Li, X.F. and Lee, K.Y. (2014), "Exact frequency equations of free vibration of exponentially nonuniform functionally graded Timoshenko beam", Int. J. Mech. Sci., 89, 1-11. https://doi.org/10.1016/j.ijmecsci.2014.08.017
- Timoshenko, S. and Woinowsky-Krieger, S. (1959), Theory of Plates and Shells, Second Edition, McGraw-Hill, Singapore.
- Uysal, M.U. (2016), "Buckling behaviours of functionally graded polymeric thin-walled hemispherical shells", Steel Compos. Struct., Int. J., 21(4), 849-862. https://doi.org/10.12989/scs.2016.21.4.849
- Uysal, M.U. and Guven, U. (2015), "Buckling of functional graded polymeric sandwich panel under different load cases", Compos. Struct., 121, 182-196. https://doi.org/10.1016/j.compstruct.2014.11.012
- Uysal, M.U. and Guven, U. (2016), "A bonded plate having orthotropic inclusion in the adhesive layer under in-plane shear loading", J. Adhesion, 92, 214-235. https://doi.org/10.1080/00218464.2015.1019064
- Uysal, M.U. and Kremzer, M. (2015), "Buckling behaviour of short cylindrical functionally gradient polymeric materials", Acta Physica Polonica A, 127, 1355-1357. https://doi.org/10.12693/APhysPolA.127.1355
- Wang, X., Liang, X. and Jin, C. (2017), "Accurate dynamic analysis of functionally graded beams under a moving point load", Mech. Based Des. Struct. Mach., 45, 76-91. https://doi.org/10.1080/15397734.2016.1145060
- Yin, S., Yu, T., Bui, T.Q., Zheng, X. and Yi, G. (2017), "Rotationfree isogeometric analysis of functionally graded thin plates considering in-plane material inhomogeneity", Thin-Wall. Struct., 119, 385-395. https://doi.org/10.1016/j.tws.2017.06.033
- Zenkour, A.M. (2012), "Hygrothermal of exponentially graded rectangular plates", J. Mech. Mater. Struct., 7, 687-700. https://doi.org/10.2140/jomms.2012.7.687
- Zur, K.K. (2015), "Green's functions in frequency analysis of circular thin plates of variable thickness", J. Theor. Appl. Mech., 53, 873-884. https://doi.org/10.15632/jtam-pl.53.4.873
- Zur, K.K. (2016), "Green's functions in frequency analysis of thin annular plates with nonlinear variable thickness", Appl. Math. Model., 40, 3601-3619. https://doi.org/10.1016/j.apm.2015.10.014