DOI QR코드

DOI QR Code

Evaluation of the Biological Activity Affected by Extracting Solvents of Rosemary (Rosmarinus officinalis L.)

로즈마리(Rosmarinus officinalis L.) 극성별 용매 추출물의 생리활성 검증

  • Li, Ke (Department of Horticultural Bioscience, Pusan National University) ;
  • Yang, Kyeong Hee (Department of Horticultural Bioscience, Pusan National University) ;
  • Guo, Lu (Department of Horticultural Bioscience, Pusan National University) ;
  • Cui, Zhengwei (Department of Horticultural Bioscience, Pusan National University) ;
  • Son, Beung Gu (Department of Horticultural Bioscience, Pusan National University) ;
  • Kang, Jum Soon (Department of Horticultural Bioscience, Pusan National University) ;
  • Lee, Yong Jae (Department of Horticultural Bioscience, Pusan National University) ;
  • Park, Young Hoon (Department of Horticultural Bioscience, Pusan National University) ;
  • Je, Beong Il (Department of Horticultural Bioscience, Pusan National University) ;
  • Choi, Young Whan (Department of Horticultural Bioscience, Pusan National University)
  • 이커 (부산대학교 원예생명과학과) ;
  • 양경희 (부산대학교 원예생명과학과) ;
  • 궈루 (부산대학교 원예생명과학과) ;
  • 추이정웨이 (부산대학교 원예생명과학과) ;
  • 손병구 (부산대학교 원예생명과학과) ;
  • 강점순 (부산대학교 원예생명과학과) ;
  • 이용재 (부산대학교 원예생명과학과) ;
  • 박영훈 (부산대학교 원예생명과학과) ;
  • 제병일 (부산대학교 원예생명과학과) ;
  • 최영환 (부산대학교 원예생명과학과)
  • Received : 2018.08.22
  • Accepted : 2019.01.07
  • Published : 2019.01.30

Abstract

Rosemary (Rosmarinus officinalis L.) is widely used as a food material. Although various physiological activities of rosemary have been reported, there have been no studies on the physiological activity of solvent extracts with different polarities. Rosemary extracts were obtained by extraction of dried powder using 0%, 25%, 50%, 70%, and 95% ethanol (EtOH) in distilled water, methanol, ethyl acetate, and hexane. As these ratios of EtOH are generally chosen by default and scarcely optimized, we investigated the impact of the composition of EtOH in distilled water on extract-related characteristics, such as DPPH free radical scavenging and ${\alpha}$-glucosidase inhibition, on the differentiation of 3T3-L1 adipocytes and inhibition of tyrosinase. Adipogenesis inhibition was highest at 70% EtOH. DPPH scavenging activity and inhibition of tyrosinase activity were reduced with 50% EtOH in water. However, inhibition of ${\alpha}$-glucosidase activity was higher in 50% EtOH in water. The best solvents in terms of DPPH scavenging activity, inhibition of tyrosinase and ${\alpha}$-glucosidase, and differentiation of adipocytes obtained with different concentrations of EtOH, although a lower similar activities were found with 50% ethanol. Considering the extraction solvents, a ratio of EtOH in water gives different content and constituents of compounds. These differences will give activities inhibition of adipogenesis, tyrosinase, ${\alpha}$-glucosidase activity, and DPPH scavenging activity.

로즈마리(Rosmarinus officinalis L.)는 식품소재로서 널리 사용되고 있으며 다양한 생리활성이 보고되어 있다. 그러나 극성이 다른 용매 추출물의 상호작용과 생리활성에 관한 연구는 잘 정립되어서 보고되지 않았다. 따라서 본 연구에서는 로즈마리 분말을 hexane, EtOAc, MeOH 그리고 95%, 70%, 50% 또는 25% EtOH 및 물로 추출한 다음, 각각의 용매 추출물의 항산화, 항비만, 항 ${\alpha}$-glucosidase 활성 및 미백효과 등을 조사하기 위해 수행되었다. 로즈마리 추출물의 항산화 및 tyrosinase 저해 효과는 비교적 극성이 높은 50% EtOH, 25% EtOH 및 증류수 추출물이 가장 효과가 좋았다. 그러나 ${\alpha}$-glucosidase 활성억제는 EtOH의 농도가 높은 50~95%와 MeOH 추출물에서 효과가 가장 좋았다. 지방세포의 분화억제는 70% EtOH로 처리시에 가장 효과가 좋았으며, EtOH의 농도가 70% 보다 증가하거나 감소하였을 경우에는 농도에 비례하여 감소하였다. 본 실험의 결과 최적의 추출용매는 항산화, tyrosinase 저해, ${\alpha}$-glucosidase 활성억제 및 지방세포의 분화 억제 등의 질환에 따라서 차이가 있었다. 이러한 추출용매를 고려하면 추출용매에 따라서 최적의 생리활성 성분의 종류와 함량이 차이가 있고 이로 인하여 생리활성 효과도 달라진 것으로 생각된다.

Keywords

SMGHBM_2019_v29n1_69_f0001.png 이미지

Fig. 1. The process of inducing cell adipogenesis and drug treatment.

SMGHBM_2019_v29n1_69_f0002.png 이미지

Fig. 2. Rosemary extracts inhibited adipogenesis in the 3T3-L1 cell line. The 3T3-L1 cell line was maintained in DMEM containing 10% FBS, 25 mM NaHCO3 and 25 mM HEPEs (culture medium) and adipogenesis was induced with culture medium including 10 μM rosiglitazone, 10 μg/ml insulin and 1 μM dexamethasone (differentiation medium). All extracts were treated 50 μg/ml throughout the induction period. Cells were stained with oil red O for photography (A), after which the oil red O was dissolved using iso-propanol and the OD value was determined (B). Pictures were taken at 200× (A). Values are presented as the mean ± SD (n=3).

SMGHBM_2019_v29n1_69_f0003.png 이미지

Fig. 3. Inhibitory effect of tyrosinase in Rosmarinus officinalis L. leaf and stem powder extracts. Kojic acid used as positive control is percent at 50 μg/ml. Results are presented as mean ± SD of three independent experiments.

Table 1. Inhibitory effect of DPPH scavenging in Rosmarinus officinalis L. leaf and stem powder extracts

SMGHBM_2019_v29n1_69_t0001.png 이미지

Table 2. Inhibitory effect of α-glucosidase in Rosmarinus officinalis L. leaf and stem powder extracts

SMGHBM_2019_v29n1_69_t0002.png 이미지

References

  1. Adham, A. N. 2015. Comparative extraction methods, phytochemical constituents, fluorescence analysis and HPLC validation of rosmarinic acid content in Mentha piperita, Mentha longifolia and Osimum basilicum. J. Pharmacogn. Phytochem. 3, 130-139.
  2. Allaf, T., Tomao, V., Ruiz, K., Bachari, K., ElMaataoui, M. and Chemat, F. 2013. Deodorization by instant controlled pressure drop autovaporization of rosemary leaves prior to solvent extraction of antioxidants. LWT - Food Sci. Technol. 51, 111-119. https://doi.org/10.1016/j.lwt.2012.11.007
  3. Almela, L., Sanchez-Munoz, B., Fernandez-Lopez, J. A., Roca, M. J. and Rabe, V. 2006. Liquid chromatograpic-mass spectrometric analysis of phenolics and free radical scavenging activity of rosemary extract from different raw material. J. Chromatogr. A 1120, 221-229. https://doi.org/10.1016/j.chroma.2006.02.056
  4. Angelov, A., Putyrski, M. and Liebl, W. 2006. Molecular and biochemical characterization of ${\alpha}$-glucosidase and ${\alpha}$-mannosidase and their clustered genes from the thermoacidophilic archaeon Picrophilus Torridus. J. Bacteriol. 188, 7123-7131. https://doi.org/10.1128/JB.00757-06
  5. Aruoma, O. I., Spencer, J. P., Rossi, R., Aeschbach, R., Khan, A., Mahmood, N., Munoz, A., Murcia, A., Butler, J. and Halliwell, B. 1996. An evaluation of the antioxidant and antiviral action of extracts of rosemary and Provencal herbs. Food Chem. Toxicol. 34, 449-456. https://doi.org/10.1016/0278-6915(96)00004-X
  6. Barnes, H. M., Reldman, J. R. and White, W. V. 1950. Isochlorogenic acid. Isolation from coffee and structure studies. J. Am. Chem. Soc. 72, 4178-4183. https://doi.org/10.1021/ja01165a095
  7. Blois, M. S. 1958. Antioxidant determinations by the use of a stable free radical. Nature 181, 1199-1200. https://doi.org/10.1038/1811199a0
  8. Bustanji, Y., Issa, A., Mohammad, M. and Hudaib, M. 2010. Inhibition of hormone sensitive lipase and pancreatic lipase by Rosmarinus officinalis extract and selected phenolic constituents. J. Med. Plant Res. 4, 2235-2242.
  9. Chen, H. Y., Lin, Y. C. and Hsieh, C. L. 2007. Evaluation of antioxidant activity of aqueous extract of some selected nutraceutical herbs. Food Chem. 104, 1418-1424. https://doi.org/10.1016/j.foodchem.2007.02.004
  10. de Miguel-Etayo, P., Moreno, L. A., Iglesia, I., Bel-Serrat, S., Mouratidou, T. and Garagorri, J. M. 2013. Body composition changes during interventions to treat overweight and obesity in children and adolescents: a descriptive review. Nutr. Hosp. 28, 52-62.
  11. del Marmol, V. and Beermann, F. 1996. Tyrosinase and related proteins in mammalian pigmentation. FEBS Lett. 381, 165-168. https://doi.org/10.1016/0014-5793(96)00109-3
  12. Dorman, H. J. D., Peltoketo, A., Hiltunen, R. and Tikkanen, M. J. 2003. Characterization of the antioxidant properties of de-odourised aqueous extracts from selected lamiaceae herbs. Food Chem. 83, 255-262. https://doi.org/10.1016/S0308-8146(03)00088-8
  13. Gonzalez-Vallinas, M., Reglero, G. and Ramirez de Molina, A. 2015. Rosemary (Rosmarinus officinalis L.) extract as a potential complementary agent in anticancer therapy. Nutr. Cancer 67, 1221-1229.
  14. Gregoire, F. M., Smas, C. M. and Sui, H. S. 1998. Understanding adipocyte differentiation. Physiol. Rev. 78, 783-809. https://doi.org/10.1152/physrev.1998.78.3.783
  15. Hruby, A. and Hu, F. B. 2015. The epidemiology of obesity: A big picture. PharmacoEconomics 33, 673-689. https://doi.org/10.1007/s40273-014-0243-x
  16. Jacotet-Navarro, M., Laguerre, M., Fabiano-Tixier, A. S., Tenon, M., Feuillere, N., Bily, A. and Chemat, F. 2018. What is the best ethanol-water ratio for the extraction of antioxidants from rosemary? Impact of the solvent on yield, composition, and activity of the extracts. Electrophoresis 39, 1946-1956 https://doi.org/10.1002/elps.201700397
  17. Lee, C. Y., Kim, K. M. and Son, H. S. 2013. Optimal extraction conditions to produce rosemary extracts with higher phenolic content and antioxidant activity. Kor. J. Food Sci. Technol. 45, 501-507. https://doi.org/10.9721/KJFST.2013.45.4.501
  18. Lee, M. S., Kim, C. T., Kim, C. J., Cho, Y. J. and Kim, Y. H. 2006. Effects of Portulaca oleracea L. extract on lipolysis and hormone sensitive lipase (HSL) gene expression in 3T3-L1 adipocytes. Kor. J. Food Nutr. 39, 742-747.
  19. Marcus, A. W. and Kathryn, H. 2007. The herb and spice companion: A Connoisseur's Guide. Running Press, Philadelphia, PA, USA. pp. 3-10.
  20. Moore, J., Yousef, M. and Tsiani, E. 2016. Anticancer effects of rosemary (Rosmarinus officinalis L.) extract and rosemary extract polyphenols. Nutrients 8, E731. https://doi.org/10.3390/nu8110731
  21. Mulinacci, N., Innocenti, M., Bellumori, M., Giaccherini, C., Martini, V. and Michelozzi, M. 2011. Storage method, drying processes and extraction procedures strongly after the phenolic fraction of rosemary leaves: An HPLC/DAD/MS study. Talanta 85, 167-176. https://doi.org/10.1016/j.talanta.2011.03.050
  22. Ozcan, M. M. and Chalchat, J. C. 2008. Chemical composition and antifungal activity of rosemary (Rosmarinus officinalis L.) oil from Turkey. Int. J. Food Sci. Nutr. 59, 691-698. https://doi.org/10.1080/09637480701777944
  23. Ozcan, M. M., Erel, O. and Herken, E. E. 2009. Antioxidant activity, phenolic content, and peroxide value of essential oil and extracts of some medicinal and aromatic plants used as condiments and herbal teas in Turkey. J. Med. Food 12, 198-202. https://doi.org/10.1089/jmf.2008.0062
  24. Perez, M. B., Calderon, N. L. and Croci, C. A. 2007. Radiation-induced enhancement of antioxidant activity in extracts of rosemary (Rosmarinus officinalis L.). Food Chem. 104, 585-592. https://doi.org/10.1016/j.foodchem.2006.12.009
  25. Pryor, W. A., Houk, K. N., Foote, C. S., Fukuto, J. M., Ignarro, L. J., Squadrito, G. L. and Davies, K. J. 2006. Free radical biology and medicine: it's a gas, man! Am. J. Physiol. Regul Integr. Comp. Physiol. 291, R491-R511. https://doi.org/10.1152/ajpregu.00614.2005
  26. Rodriguez-Rojo, S., Visentin, A., Maestri, D. and Cocero, M. J. 2012. Assisted extraction of rosemary antioxidants with green solvents. J. Food Engin. 109, 98-103. https://doi.org/10.1016/j.jfoodeng.2011.09.029
  27. Sasaki, S. and Inoguchi, T. 2012. The role of oxidative stress in the pathogenesis of diabetic vascular complications. Diabetes Metab. J. 36, 255-261. https://doi.org/10.4093/dmj.2012.36.4.255
  28. Singla, P., Bardoloi, A. and Parkash, A. A. 2010. Metabolic effects of obesity: a review. World J. Diabetes 1, 76-88. https://doi.org/10.4239/wjd.v1.i3.76
  29. Song, J. H., Kwon, H. D., Lee, W. K. and Park, I. H. 1998. Antimicrobial activity and composition of extract from Smilax china Root. J. Kor. Soc. Food Sci. Nutr. 27, 574-584.
  30. Yagi, A., Kanbara, T. and Morinobu, N. 1986. The effects of tyrosinase inhibition for aloe. Planta Med. 3981, 517-519.
  31. Zebisch, K., Voigt, V., Wabitsch, M. and Brandsch, M. 2012. Protocol for effective differentiation of 3T3-L1 cells to adipocytes. Anal. Biochem. 425, 88-90. https://doi.org/10.1016/j.ab.2012.03.005
  32. Zhang, J. W., Tang, Q. Q., Vinson, C. and Lane, M. D. 2004. Dominant-negative C/EBP disrupts mitotic clonal expansion and differentiation of 3T3-L1 preadipocytes. Proc. Natl. Acad. Sci. USA. 101, 43-47. https://doi.org/10.1073/pnas.0307229101