과제정보
연구 과제 주관 기관 : Mustansiriyah university
The authors would like to thank Mustansiriyah university (www.uomustansiriyah.edu.iq) Baghdad-Iraq for its support in the present work.
참고문헌
- Ahmed, R.A., Fenjan, R.M. and Faleh, N.M. (2019), "Analyzing post-buckling behavior of continuously graded FG nanobeams with geometrical imperfections", Geomech. Eng., Int. J., 17(2), 175-180. https://doi.org/10.12989/gae.2019.17.2.175
- Al-Maliki, A.F., Faleh, N.M. and Alasadi, A.A. (2019), "Finite element formulation and vibration of nonlocal refined metal foam beams with symmetric and non-symmetric porosities", Struct. Monitor. Maint., Int. J., 6(2), 147-159. https:// doi.org/10.12989/smm.2019.6.2.147
- Aydogdu, M. (2009), "A general nonlocal beam theory: its application to nanobeam bending, buckling and vibration", Physica E: Low-dimens. Syst. Nanostruct., 41(9), 1651-1655. https://doi.org/10.1016/j.physe.2009.05.014
- Barati, M.R. (2017), "Nonlocal-strain gradient forced vibration analysis of metal foam nanoplates with uniform and graded porosities", Adv. Nano Res., Int. J., 5(4), 393-414. https://doi.org/10.12989/anr.2017.5.4.393
- Barati, M.R. and Shahverdi, H. (2016), "A four-variable plate theory for thermal vibration of embedded FG nanoplates under non-uniform temperature distributions with different boundary conditions", Struct. Eng. Mech., Int. J., 60(4), 707-727. https://doi.org/10.12989/sem.2016.60.4.707
- Barati, M.R. and Shahverdi, H. (2017a), "An analytical solution for thermal vibration of compositionally graded nanoplates with arbitrary boundary conditions based on physical neutral surface position", Mech. Adv. Mater. Struct., 24(10), 840-853. https://doi.org/10.1080/15376494.2016.1196788
- Barati, M.R. and Shahverdi, H. (2017b), "Hygro-thermal vibration analysis of graded double-refinednanoplate systems using hybrid nonlocal stress-strain gradient theory", Compos. Struct., 176, 982-995. https://doi.org/10.1016/j.compstruct.2017.06.004
- Barati, M.R. and Shahverdi, H. (2017c), "Vibration analysis of multi-phase nanocrystalline silicon nanoplates considering the size and surface energies of nanograins/nanovoids", Int. J. Eng. Sci., 119, 128-141. https://doi.org/10.1016/j.ijengsci.2017.06.002
- Barati, M.R. and Shahverdi, H. (2017d), "Frequency analysis of porous nano-mechanical mass sensors made of multi-phase nanocrystalline silicon materials", Mater. Res. Express, 4(7), 075019. https://doi.org/10.1088/2053-1591/aa7ac2
- Besseghier, A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2017), "Free vibration analysis of embedded nanosize FG plates using a new nonlocal trigonometric shear deformation theory", Smart Struct. Syst., Int. J., 19(6), 601-614. https://doi.org/10.12989/sss.2017.19.6.601
- Bounouara, F., Benrahou, K.H., Belkorissat, I. and Tounsi, A. (2016), "A nonlocal zeroth-order shear deformation theory for free vibration of functionally graded nanoscale plates resting on elastic foundation", Steel Compos. Struct., Int. J., 20(2), 227-249. https://doi.org/10.12989/scs.2016.20.2.227
- Ebrahimi, F. and Barati, M.R. (2016), "Size-dependent thermal stability analysis of graded piezomagnetic nanoplates on elastic medium subjected to various thermal environments", Appl. Phys. A, 122(10), 910. https://doi.org/10.1007/s00339-016-0441-9
- Ebrahimi, F. and Barati, M.R. (2017a), "Vibration analysis of viscoelastic inhomogeneous nanobeams resting on a viscoelastic foundation based on nonlocal strain gradient theory incorporating surface and thermal effects", Acta Mechanica, 228(3), 1197-1210. https://doi.org/10.1007/s00707-016-1755-6
- Ebrahimi, F. and Barati, M.R. (2017b), "Size-dependent vibration analysis of viscoelastic nanocrystalline silicon nanobeams with porosities based on a higher order refined beam theory", Compos. Struct., 166, 256-267. https://doi.org/10.1016/j.compstruct.2017.01.036
- Ebrahimi, F. and Barati, M.R. (2018), "Stability analysis of porous multi-phase nanocrystalline nonlocal beams based on a general higher-order couple-stress beam model", Struct. Eng. Mech., Int. J., 65(4), 465-476. https://doi.org/10.12989/sem.2018.65.4.465
- Eltaher, M.A., Mahmoud, F.F., Assie, A.E. and Meletis, E.I. (2013), "Coupling effects of nonlocal and surface energy on vibration analysis of nanobeams", Appl. Math. Computat., 224, 760-774. https://doi.org/10.1016/j.amc.2013.09.002
- Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803
- Farajpour, A., Rastgoo, A. and Mohammadi, M. (2017), "Vibration, buckling and smart control of microtubules using piezoelectric nanoshells under electric voltage in thermal environment", Physica B: Condensed Matter, 509, 100-114. https://doi.org/10.1016/j.physb.2017.01.006
- Ke, L.L., Wang, Y.S. and Wang, Z.D. (2012), "Nonlinear vibration of the piezoelectric nanobeams based on the nonlocal theory", Compos. Struct., 94(6), 2038-2047. https://doi.org/10.1016/j.compstruct.2012.01.023
- Ke, L.L., Wang, Y.S. and Reddy, J.N. (2014), "Thermo-electro-mechanical vibration of size-dependent piezoelectric cylindrical nanoshells under various boundary conditions", Compos. Struct., 116, 626-636. https://doi.org/10.1016/j.compstruct.2014.05.048
- Li, C. (2014a), "A nonlocal analytical approach for torsion of cylindrical nanostructures and the existence of higher-order stress and geometric boundaries", Compos. Struct., 118, 607-621. https://doi.org/10.1016/j.compstruct.2014.08.008
- Li, C. (2014b), "Torsional vibration of carbon nanotubes: comparison of two nonlocal models and a semicontinuum model", Int. J. Mech. Sci., 82, 25-31. https://doi.org/10.1016/j.ijmecsci.2014.02.023
- Li, C., Guo, L., Shen, J.P., He, Y.P. and Ju, H. (2013), "Forced Vibration Analysis on Nanoscale Beams Accounting for Effective Nonlocal Size Effects", Adv. Vib. Eng., 12(6), 623-633.
- Li, L., Hu, Y. and Ling, L. (2016), "Wave propagation in viscoelastic single-walled carbon nanotubes with surface effect under magnetic field based on nonlocal strain gradient theory", Physica E: Low-dimens. Syst. Nanostruct., 75, 118-124. https://doi.org/10.1016/j.physe.2015.09.028
- Lim, C.W. (2010), "On the truth of nanoscale for nanobeams based on nonlocal elastic stress field theory: equilibrium, governing equation and static deflection", Appl. Math. Mech., 31(1), 37-54. https://doi.org/10.1007/s10483-010-0105-7
- Lim, C.W., Zhang, G. and Reddy, J.N. (2015), "A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation", J. Mech. Phys. Solids, 78, 298-313. https://doi.org/10.1016/j.jmps.2015.02.001
- Mehralian, F., Beni, Y.T. and Ansari, R. (2016), "Size dependent buckling analysis of functionally graded piezoelectric cylindrical nanoshell", Compos. Struct., 152, 45-61. https://doi.org/10.1016/j.compstruct.2016.05.024
- Mehralian, F., Beni, Y.T and Zeverdejani, M.K. (2017), "Nonlocal strain gradient theory calibration using molecular dynamics simulation based on small scale vibration of nanotubes", Physica B: Condensed Matter, 514, 61-69. https://doi.org/10.1016/j.physb.2017.03.030
- Merazi, M., Hadji, L., Daouadji, T.H., Tounsi, A. and Adda Bedia, E.A. (2015), "A new hyperbolic shear deformation plate theory for static analysis of FGM plate based on neutral surface position", Geomech. Eng., Int. J., 8(3), 305-321. https://doi.org/10.12989/gae.2015.8.3.305
- Meyers, M.A., Mishra, A. and Benson, D.J. (2006), "Mechanical properties of nanocrystalline materials", Progress Mater. Sci., 51(4), 427-556. https://doi.org/10.1016/j.pmatsci.2005.08.003
- Mokhtar, Y., Heireche, H., Bousahla, A.A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2018), "A novel shear deformation theory for buckling analysis of single layer graphene sheet based on nonlocal elasticity theory", Smart Struct. Syst., Int. J., 21(4), 397-405. https://doi.org/10.12989/sss.2018.21.4.397
- Saidi, H., Tounsi, A. and Bousahla, A.A. (2016), "A simple hyperbolic shear deformation theory for vibration analysis of thick functionally graded rectangular plates resting on elastic foundations", Geomech. Eng., Int. J., 11(2), 289-307. https://doi.org/10.12989/gae.2016.11.2.289
- Shen, J.P., Wang, P.Y., Li, C. and Wang, Y.Y. (2019), "New observations on transverse dynamics of microtubules based on nonlocal strain gradient theory", Compos. Struct., 225, 111036. https://doi.org/10.1016/j.compstruct.2019.111036
- Sun, J., Lim, C.W., Zhou, Z., Xu, X. and Sun, W. (2016), "Rigorous buckling analysis of size-dependent functionally graded cylindrical nanoshells", J. Appl. Phys., 119(21), 214303. https://doi.org/10.1063/1.4952984
- Thai, H.T. (2012), "A nonlocal beam theory for bending, buckling, and vibration of nanobeams", Int. J. Eng. Sci., 52, 56-64. https://doi.org/10.1016/j.ijengsci.2011.11.011
- Wang, G.F., Feng, X.Q., Yu, S.W. and Nan, C.W. (2003), "Interface effects on effective elastic moduli of nanocrystalline materials", Mater. Sci. Eng.: A, 363(1), 1-8. https://doi.org/10.1016/S0921-5093(03)00253-3
- Zaera, R., Fernandez-Saez, J. and Loya, J.A. (2013), "Axisymmetric free vibration of closed thin spherical nano-shell", Compos. Struct., 104, 154-161. https://doi.org/10.1016/j.compstruct.2013.04.022
- Zeighampour, H. and Beni, Y.T. (2014), "Cylindrical thin-shell model based on modified strain gradient theory", Int. J. Eng. Sci., 78, 27-47. https://doi.org/10.1016/j.ijengsci.2014.01.004
- Zenkour, A.M. and Abouelregal, A.E. (2014), "Vibration of FG nanobeams induced by sinusoidal pulseheating via a nonlocal thermoelastic model", Acta Mechanica, 225(12), 3409-3421. https://doi.org/10.1007/s00707-014-1146-9
- Zhou, J.Q., Wang, L. and Ye, Z.X. (2013), "Micromechanics model for nanovoid growth in nanocrystalline materials", Appl. Mech. Mater., 364, 754-759. https://doi.org/10.4028/www.scientific.net/AMM.364.754
피인용 문헌
- Effects of hygro-thermo-mechanical conditions on the buckling of FG sandwich plates resting on elastic foundations vol.25, pp.4, 2019, https://doi.org/10.12989/cac.2020.25.4.311
- Porosity-dependent mechanical behaviors of FG plate using refined trigonometric shear deformation theory vol.26, pp.5, 2020, https://doi.org/10.12989/cac.2020.26.5.439