DOI QR코드

DOI QR Code

A Primary Channel Selection Scheme for Wideband WLAN V2X Communication

무선랜 기반 광대역 V2X 통신에서의 채널 접근 동작을 위한 주 채널 설정 기법

  • Hong, Hanseul (School of Electrical & Electronic Engineering, Yonsei University) ;
  • Kim, Ronny Yongho (Department of Railroad Electrical & Electronic Engineering, Korea National University of Transportation) ;
  • Ahn, Woojin (Korea Railroad Research Institute)
  • 홍한슬 (연세대학교 전기전자공학과) ;
  • 김용호 (한국교통대학교 철도전기전자공학과) ;
  • 안우진 (한국철도기술연구원)
  • Received : 2019.11.20
  • Accepted : 2019.12.21
  • Published : 2019.12.30

Abstract

With the proliferation of intelligent transportation system (ITS) with dedicated short-range communication (DSRC) deployment, there are various applications requiring different throughput and reliability performance. To meet the enhanced throughput requirements in newly generated applications, IEEE 802.11bd is proposed to standardize for support of enhanced throughput and latency, preserving the fairness with previously deployed WLAN V2X devices. One of the main features of IEEE 802.11 bd is 20 MHz transmission to support the high data rate. In this paper, the primary channel selection method is proposed to guarantee the fairness with frame transmissions with 10 MHz bandwith including communications in WLAN V2X devices deployed with IEEE 802.11p. Simulation shows that the proposed channel access method for 20 MHz transmission with primary selection preserves the fairness without the change of channel access method in wide-band transmission.

DSRC를 활용한 ITS 시스템이 확산됨에 따라, 더 높은 전송 용량 및 전송 신뢰도를 요구하는 ITS 서비스가 개발되고 있다. 이에 따라, 차량 통신 환경에서 높은 전송 용량 및 신뢰성을 지원하는 한편 기존 무선랜 차량 단말들과의 형평성을 보장하기 위해, IEEE에서는 차세대 차량 통신 표준인 IEEE 802.11bd가 제안되었으며, 표준화가 개발 및 진행 중이다. 특히, 높은 전송 용량 지원을 위해, IEEE 802.11bd에서는 20 MHz 대역을 활용한 전송 동작이 지원 및 반영되었다. 본 논문에서는 기존 무선랜 채널 확장 방법을 활용하면서도 차량 통신 환경에서의 기존 단말과의 채널 접근 방법에서의 공정성을 만족하기 위한 채널 접근 방법을 제시한다. 특히, 채널 점유 비율에 따른 주 채널 설정 방법을 통해 기존 단말의 채널 접근 방법과의 공정성을 유지할 수 있다.

Keywords

References

  1. IEEE Computer Society, IEEE Standard for Information Technology - Telecommunications and Information exchange between systems - Local and metropolitan area networks - Specific requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 6: Wireless Access in Vehicular Environments, IEEE 802.11p, July. 2010.
  2. IEEE Vehicular Technology Society, IEEE Standard for Wireless Access in Vehicular Environments (WAVE) - Service for Applications and Management Messages, IEEE 1609.2, March. 2016.
  3. IEEE Vehicular Technology Society, IEEE Standard for Wireless Access in Vehicular Environments (WAVE) - Networking Services, IEEE 1609.3, April. 2016.
  4. IEEE Vehicular Technology Society, IEEE Standard for Wireless Access in Vehicular Environments (WAVE) - Multi-Channel Operation, IEEE 1609.4, March. 2016.
  5. J. B. Kenney, "Dedicated Short-Range Communications (DSRC) Standards in the United States, " Proceedings of IEEE, vol. 99, no. 7, pp. 1162-1182, July. 2011. https://doi.org/10.1109/JPROC.2011.2132790
  6. R. Zhang et al., "Increasing Traffic Flows with DSRC Technology: Field Trials and Performance Evaluation," in Proceedings of IECON 2018 - 44th Annual Conference of the IEEE Industrial Electronics Society, Washington, DC, pp. 6191-6196, October, 2018.
  7. B. Sun and H. Zhang, 802.11 NGV Proposed PAR, IEEE 802.11 Working Group, 18/861r9, November, 2018.
  8. ASTM International, Standard Specification for Telecommunications and Information Exchange Between Roadside and Vehicle Systems - 5-GHz Band Dedicated Short-Range Communications (DSRC), Medium Access Control (MAC), and Physical Layer (PHY) Specifications, ASTM E2213-02, 2002
  9. I. S. Jang, D. G. Lim, J. S. Choi, J. K. Kim, E. S. Park and S. W. Kim, 20 MHz Channel Access in 11bd, IEEE 802.11 Working Group, 19/366r6, May. 2019.
  10. C. Campolo, A. Molinaro and A. Vinel, "Understanding adjacent channel interference in multi-channel VANETs," in Proceedings of 2014 IEEE Vehicular Networking Conference (VNC), Paderborn: Germany, pp. 101-104, December, 2014.
  11. C. Campolo, C. Sommer, F. Dressler and A. Molinaro, "On the impact of adjacent channel interference in multi-channel VANETs," in Proceedings of 2016 IEEE International Conference on Communications (ICC), Kuala Lumpu: Malaysia, pp. 1-7, May, 2016.
  12. N. Lyamin, A. Vinel, D. Smely and B. Bellalta, "ETSI DCC: Decentralized Congestion Control in C-ITS," IEEE Communications Magazine, Vol. 56, No. 12, pp. 112-118, December. 2018. https://doi.org/10.1109/MCOM.2017.1700173
  13. G. Bianchi, "Performance analysis of the IEEE 802.11 distributed coordination function," IEEE Journal on Selected Areas in Communications, Vol. 18, No. 3, pp. 535-547, March. 2000. https://doi.org/10.1109/49.840210
  14. T.-C. Houm, L.-F. Tsao and H.-C. Liu, "Analyzing the throughput of IEEE 802.11 DCF scheme with hidden nodes," in Proceedings of VTC 2003-Fall, Orlando: FL, pp. 2870-2874, October, 2003.
  15. N. C. Taher, Y. Ghamri-Doudane, B. E. Hassan and N. Agoulmine, "An accurate analytical model for 802.11e EDCA under different traffic conditions with contention-free bursting," Journal of Computer Networks and Communications, Vol. 2011, pp. 1-24, 2011.
  16. J. Kenney, An Automaker Perspective on Next Gen V2X, IEEE 802.11 Working Group, 18/917r0, May, 2018.