References
- H. C. Chen, B.H. Tseng, M. P. Houng, Y. H. Wang, Titanium nitride diffusion barrier for copper metallization on gallium arsenide, Thin Solid Films, 445(1) (2003) 112-117 https://doi.org/10.1016/S0040-6090(03)01237-9
- C. Muratore, J. J. Hu, A. A. Voevodin, Adaptive nanocomposite coatings with a titanium nitride diffusion barrier mask for high-temperature tribological applications, Thin Solid Films, 515(7-8) (2007) 3638-3643 https://doi.org/10.1016/j.tsf.2006.09.051
-
L. Walter, Properties of bulk
${\delta}$ -TiN1-x prepared by nitrogen diffusion into titanium metal, J. Alloy and Compounds, 186(2) (1992) 293-307. https://doi.org/10.1016/0925-8388(92)90016-3 - C. F. Hsieh, S. Jou, Titanium nitride electrodes for micro-gap discharge, Microelectronics Journal, 37(9) (2006) 867-870. https://doi.org/10.1016/j.mejo.2006.03.003
- Z. Peng et. al., Hard, wear-resistant Titanium nitride films for ceramic cutting tools by pulsed high energy density plasma, Surface and Coatings Technology, 166(2-3) (2003) 183-188. https://doi.org/10.1016/S0257-8972(02)00776-4
- M. Chandrashekar, K. V. Sreenivasa Prasad, The Effect of Cobalt on Wear Behavior of Cemented Carbide cutting tools for machining of Titanium alloy, Materials Today; Proceedings, 5(2) (2018) 7678-7684. https://doi.org/10.1016/j.matpr.2017.11.443
- M. Sundar, D. Whitehead, P. T. Mativenga, L. Li, K.E. Cooke, Eximer laser decoating of chromium titanium aluminium nitride to facilitate re-use of cutting tools, Optics & Laser Technology, 41(8) (2009) 938-944. https://doi.org/10.1016/j.optlastec.2009.04.003
- J. Li, Bo Tao, S. Huang, Zhouping Yin, Cutting tools embedded with thin film thermocouples vertically to the rake face for temperature measurement, Sensors and Actuators A: Physical, 296 (2019) 392-399. https://doi.org/10.1016/j.sna.2019.07.043
- P. Gupta et. al., Decorative black coating on titanium surfaces based on hard bi-layered carbon coatings synthesized by carbon implantation, Surface and Coatings Technology, 358 (2019) 386-393. https://doi.org/10.1016/j.surfcoat.2018.11.060
- S. Wang, X. Bai, B. Wang, Y. Fan, Preparation of TiN film on brass by CAPD as a decoration system, Thin Solid Films, 278(1-2) (1996) 29-35.
- X. Wang et. al., Effect of plasma nitriding and titanium nitride coating on the corrosion resistance of titanium, The Journal of Prosthetic Dentistry, 116(3) (2016) 450-456. https://doi.org/10.1016/j.prosdent.2016.01.016
- N. Beshchasna et. al., Surface evaluation of titanium oxynitride coatings used for developing layered cardiovascular stents, Materials Science and Engineering: C, 99 (2019) 405-416. https://doi.org/10.1016/j.msec.2019.01.131
- D. V. Mashtalyar et. al., Hard wearproof PEOcoatings formed on Mg alloy using TiN nanoparticles, Applied Surface Science, 503 (2020) 144062. https://doi.org/10.1016/j.apsusc.2019.144062
- P. Frach, U. Heisig, C. Gottfried, H. Walde, Advantageous possibilities, design aspects and technical use of double-ring magnetron sputter sources, Surf. Coat. Technol. 59(1-3) (1993) 177-182. https://doi.org/10.1016/0257-8972(93)90079-4
- P. J. Kelly, R. Hall, J. O. Brien, J. W. Bradley, G. Roche, R.D. Arnell, Substrate effects during mid-frequency pulsed DC biasing, Surf. Coat. Technol. 142-144 (2001) 635-641. https://doi.org/10.1016/S0257-8972(01)01154-9
- W. D. Sproul, Reactive sputter deposition of polycrystalline nitride and oxide supperlattice coatings, Surf. Coat. Technol. 86-87 (1996) 170-176. https://doi.org/10.1016/S0257-8972(96)02977-5
- I. Petrov, L. Hultman, J. E. Sundgren, J. Greene, Polycrystalline TiN films deposited by reactive bias magnetron sputtering: effects of ion bombardment on resputtering rates, film deposition, and microsture, J. Vac. Sci. Technol. A 10 (1992) 265-272. https://doi.org/10.1116/1.578074
- P. Patsalas, C. Charitidis, S. Logothetidis, The effect of substrate temperature and biasing on the mechanical properties and structure of sputtered titanium nitride thin films, Surf. Coat. Technol., 125 (2000) 335-340. https://doi.org/10.1016/S0257-8972(99)00606-4
- N. Jiang, H. Zhang, S. Bao, Y. Shen, Z. Zhou, XPS study for reactively sputtered titanium nitride thin films deposited under different substrate bias, Phys. B 352 (2004) 118-126. https://doi.org/10.1016/j.physb.2004.07.001
- E. K. Tentardini, E. Blando, R. Hubler, TiN structural modifications induced by bias voltage in a new dynamic controlled magnetron sputtering apparatus, Nuclear Instruments and Methods in Physics Research B 175-177 (2001) 626-629. https://doi.org/10.1016/S0168-583X(00)00652-2
- B. Priyadarshini, S. Aich, M. Chakraborty, Substrate bias voltage and deposition temperature dependence on properties of rf-magnetron sputtered titanium films on silicon (100), Bull. Mater. Sci., 37(7) (2014) 1691-1700. https://doi.org/10.1007/s12034-014-0722-x
- S. Y. CHUN, Bias Voltage Effect on the Properties of TiN Films by Reactive Magnetron Sputtering, J. Kor. Phys. Soc., 56(4) (2010) 1134-1139. https://doi.org/10.3938/jkps.56.1134
- S. Niyomsoan, W. Grant, D.L. Olson, B. Mishra, Variation of color in titanium and zirconium nitride decorative thin films, Thin Solid Films, 415 (2002) 187-194. https://doi.org/10.1016/S0040-6090(02)00530-8
- S. Grosso et. al., Titanium and titanium nitride thin films grown by dc reactive magnetron sputtering Physical Vapor Deposition in a continuous mode on stainless wires: Chemical morphological and structural investigations, Surf. Coat. Technol., 324 (2017) 318-327. https://doi.org/10.1016/j.surfcoat.2017.05.089
- A. J. Perry, Tempering effects in ion-plated TiN films: Texture, residual stress, adhesion and colour, Thin solid Films, 146 (1987) 165. https://doi.org/10.1016/0040-6090(87)90218-5
- A. Matthews, D.G. Teer, Evaluation of coating wear resistance for bulk metal forming, Thin Solid Films, 73(2) (1980) 315-321. https://doi.org/10.1016/0040-6090(80)90495-2
- Z. M. Kornmann, J. Amiguet, Hard decorative TiN coatings by ion plating, Thin Solid Films, 45 (1977) 577-582. https://doi.org/10.1016/0040-6090(77)90249-8
- J. Pelleg, L.Z. Zevin, S. Lungo, REACTIVESPUTTER-DEPOSITED TiN FILMS ON GLASS SUBSTRATE, Thin Solid Films, 197 (1991) 117-128. https://doi.org/10.1016/0040-6090(91)90225-M
- H. Guo et. al., Microstures and properties of titanium nitride films prepared by pulsed laser deposition at different substrate temperatures, Appl. Surf. Sci., 357 (2015) 473-478. https://doi.org/10.1016/j.apsusc.2015.09.061
- P. Dwivedi et. al., Scarable fabrication of prototype sensor for selective and sub-ppm ethanol sensing based on TiO2 nanotubes decorated porous silicon, Sensors and Actuators, B249 (2017) 602-610. https://doi.org/10.1016/j.snb.2017.03.154
- P. Georgios, S. M. Wolfgang, X-ray photoelectron spectroscopy of anatase-TiO2 coated carbon nanotubes, Solid State Phenomem., 162 (2010) 163-177. https://doi.org/10.4028/www.scientific.net/SSP.162.163
- P. Prieto, R. E. Kirby, X-ray photoelectron spectroscopy study of the difference between reactively and direct-sputter deposited TiN films and their oxidation properties, J. Vac. Sci. Technol. A 13 (1995) 2819. https://doi.org/10.1116/1.579711
- K. S. Robinson, P. M. A. Sherwood, X-ray photoelectron spectroscopic studies of the surface of sputtered ion plated films, Surf. And Interf. Anal., 6 (1984) 261. https://doi.org/10.1002/sia.740060603
- N. Saoula, K. Henda, R. Kesri, Influence of Nitrogen Content on the Structural and Mechanical Properties of TiN Thin Films, J. Plasma Fusion Res. 8 (2009) 1403-1407.
- S. Ohya et. al., Room temperature deposition of sputtered TiN films for superconducting coplanar waveguide resonators, Supercond. Sci. Technol., 27 (2014) 015009. https://doi.org/10.1088/0953-2048/27/1/015009