DOI QR코드

DOI QR Code

Analysis on Effective Elastic Modulus and Deformation Behavior of a Stiffness-Gradient Stretchable Electronic Package with the Island-Bridge Structure

Island-Bridge 구조의 강성도 경사형 신축 전자패키지의 유효 탄성계수 및 변형거동 분석

  • Oh, Tae Sung (Department of Materials Science and Engineering, Hongik University)
  • 오태성 (홍익대학교 공과대학 신소재공학과)
  • Received : 2019.11.11
  • Accepted : 2019.12.13
  • Published : 2019.12.30

Abstract

A stiffness-gradient soft PDMS/hard PDMS/FPCB stretchable package of the island-bridge structure was processed using the polydimethylsiloxane (PDMS) as the base substrate and the more stiff flexible printed circuit board (FPCB) as the island substrate, and its effective elastic modulus and stretchable deformation characteristics were analyzed. With the elastic moduli of the soft PDMS, hard PDMS, and FPCB to be 0.28 MPa, 1.74 MPa, and 1.85 GPa, respectively, the effective elastic modulus of the soft PDMS/hard PDMS/FPCB package was analyzed as 0.58 MPa. When the soft PDMS of the soft PDMS/hard PDMS/FPCB package was stretched to a tensile strain of 0.3, the strains occurring at hard PDMS and FPCB were found to be 0.1 and 0.003, respectively.

Polydimethylsiloxane (PDMS)를 베이스 기판으로 사용하고 이보다 강성도가 높은 flexible printed circuit board (FPCB)를 island 기판으로 사용하여 island-bridge 구조의 soft PDMS/hard PDMS/FPCB 신축 패키지를 형성하고, 이의 유효 탄성계수와 변형거동을 분석하였다. 각기 탄성계수가 0.28 MPa, 1.74 MPa 및 1.85 GPa인 soft PDMS, hard PDMS, FPCB를 사용하여 형성한 soft PDMS/hard PDMS/FPCB 신축 패키지의 유효 탄성계수는 0.58 MPa로 분석되었다. Soft PDMS/hard PDMS/FPCB 신축 패키지에서 soft PDMS의 변형률이 0.3이 되도록 인장시 hard PDMS와 FPCB의 변형률은 각기 0.1과 0.003이었다.

Keywords

References

  1. S. Patel, H. Park, P. Bonato, L. Chan, and M. Rodgers, "A Review of Wearable Sensors and Systems with Application in Rehabilitation", J. Neuroeng. Rehabil. 9, 21 (2012). https://doi.org/10.1186/1743-0003-9-21
  2. M. Chan, D. Esteve, J.-Y. Fourniols, C. Escriba, and E. Campo, "Smart Wearable Systems: Current Status and Future Challenges", Artif. Intell. Med., 56(3), 137 (2012). https://doi.org/10.1016/j.artmed.2012.09.003
  3. D. Park, and T. S. Oh, "Interfacial Adhesion Enhancement Process of Local Stiffness-Variant Stretchable Substrates for Stretchable Electronic Packages", J. Microelectron. Packag. Soc., 25(4), 111 (2018). https://doi.org/10.6117/KMEPS.2018.25.4.111
  4. D. Park, and T. S. Oh, "Flip Chip Process on the Local Stiffness-Variant Stretchable Substrate for Stretchable Electronic Packages", J. Microelectron. Packag. Soc., 25(4), 155 (2018). https://doi.org/10.6117/KMEPS.2018.25.4.155
  5. H. A. Oh, D. Park, S. J. Shin, and T. S. Oh, "Deformation Behavior of Locally Stiffness-Variant Stretchable Substrates Consisting of the Island Structure", J. Microelectron. Packag. Soc., 22(4), 117 (2015). https://doi.org/10.6117/kmeps.2015.22.4.117
  6. H. A. Oh, D. Park, K. S. Hahn, and T. S. Oh, "Elastic Modulus of Locally Stiffness-Variant Polydimethylsiloxane Substrates for Stretchable Electronic Packaging Applications", 22(4), 91 (2015). https://doi.org/10.6117/kmeps.2015.22.4.091
  7. J. Y. Choi, D. W. Park, and T. S. Oh, "Variation of Elastic Stiffness of Polydimethylsiloxane (PDMS) Stretchable Substrates for Wearable Packaging Applications", J. Microelectron. Packag. Soc., 21(4), 125 (2014). https://doi.org/10.6117/kmeps.2014.21.4.125
  8. J. Y. Choi, and T. S. Oh, "Flip Chip Process on CNT-Ag Composite Pads for Stretchable Electronic Packaging", J. Microelectron. Packag. Soc., 20(4), 17 (2013). https://doi.org/10.6117/kmeps.2013.20.4.017
  9. J. H. Ahn, H. Lee, and S. H. Choa, "Technology of Flexible Semiconductor/Memory Device", J. Microelectron. Packag. Soc., 20(2), 1 (2013). https://doi.org/10.6117/kmeps.2013.20.2.001
  10. J. Xiao, A. Carlson, Z. J. Liu, Y. Huang, H. Jiang, and J. A. Rogers, "Stretchable and Compressible Thin Films of Stiff Materials on Compliant Wavy Substrates", App. Phys. Lett., 93, 013109 (2008). https://doi.org/10.1063/1.2955829
  11. T. Sekitani, Y. Noguchi, K. Hata, T. Fukushima, T. Aida, and T. Someya, "A Rubberlike Stretchable Active Matrix Using Elastic Conductors", Science, 321, 1468 (2008). https://doi.org/10.1126/science.1160309
  12. D. H. Kim, J. H. Ahn, W. M. Choi, H. S. Kim, T. H. Kim, J. Song, Y. Y. Huang, Z. Liu, C. Lu, and J. A. Rogers, "Stretchable and Foldable Silicon Integrated Circuits", Science, 320, 507 (2008). https://doi.org/10.1126/science.1154367
  13. J. H. Ahn, and J. H. Je, "Stretchable Electronics: Materials, Architectures and Integrations", J. Phys. D: Appl. Phys., 45, 102001 (2012).
  14. D. H. Kim, and J. A. Rogers, "Stretchable Electronics: Materials Strategies and Devices", Adv. Mater., 20, 4887 (2008). https://doi.org/10.1002/adma.200801788
  15. J. Y. Choi, D. H. Park, and T. S. Oh, "Chip Interconnection Process for Smart Fabrics Using Flip-Chip Bonding of SnBi Solder", J. Microelectron. Packag. Soc., 19(3), 71 (2012). https://doi.org/10.6117/kmeps.2012.19.3.071
  16. S. W. Jung, J. S. Choi, J. B. Koo, C. W. Park, B. S. Na, J. Y. Oh, S. S. Lee, and H. Y. Chu, "Stretchable Organic Thin-Film Transistors Fabricated on Elastomer Substrates Using Polyimide Stiff-Island Structures", ECS Solid State Lett., 4(1), P1 (2015). https://doi.org/10.1149/2.0151412jss
  17. Y. Y. Hsu, C. Papakyrikos, M. Raj, M. Dalal, P. Wei, X. Wang, G. Huppert, B. Morey, and R. Ghaffari, "Archipelago Platform for Skin-Mounted Wearable and Stretchable Electronics", Proc. 64th Electronic Components and Technology Conference (ECTC), Lake Buena Vista, 145, IEEE Components, Packaging and Manufacturing Technology Society (CPMT) (2014).
  18. R. Li, M. Li, Y. Su, Z. Song, and X. Ni, "An Analytical Mechanics Model for the island-bridge Structure of Stretchable Electronics", Soft Matter, 9, 8476 (2013). https://doi.org/10.1039/c3sm51476e
  19. Y. Y, Hsu, M. Gonzalez, F. Bossuyt, J. Vanfleteren, and I. D. Wolf, "Polyimide-Enhanced Stretchable Interconnects", IEEE Trans. Electron Devices, 58(8), 2680 (2011). https://doi.org/10.1109/TED.2011.2147789
  20. S. W. Jung, J. S. Choi, J. B. Koo, C. W. Park, B. S. Na, J. Y. Oh, S. S. Lee, and H. Y. Chu, "Stretchable Organic Thin-Film Transistors Fabricated on Elastomer Substrates Using Polyimide Stiff-Island Structures", ECS Solid State Lett., 4(1), P1 (2015). https://doi.org/10.1149/2.0151412jss
  21. D. Park, and T. S. Oh, "Comparison of Flip-Chip Bonding Characteristics on Rigid, Flexible, and Stretchable Substrates: Part I. Flip-Chip Bonding on Rigid Substrates", Mater. Trans., 58(8), 1212 (2017). https://doi.org/10.2320/matertrans.M2017065
  22. D. Park, K. S. Han, and T. S. Oh, Comparison of "Flip-Chip Bonding Characteristics on Rigid, Flexible, and Stretchable Substrates: Part II. Flip-Chip Bonding on Compliant Substrates", Mater. Trans., 58(8), 1217 (2017). https://doi.org/10.2320/matertrans.M2017066
  23. N. Lu, J. Yoon, and Z. Suo, "Delamination of Stiff Islands Patterned on Stretchable Substrates", Inter. J. Mater. Res., 98, 717 (2007). https://doi.org/10.3139/146.101529
  24. D. W. Park, and T. S. Oh, "Stretchable Deformation-Resistance Characteristics of the Stiffness-Gradient Stretchable Electronic Packages Based on PDMS", to be published in J. Microelectron. Packag. Soc. (2019).
  25. C. R. Barrett, A. S. Tetelman, and W. D. Nix, "The Principles of Engineering Materials", pp.316-325, Prentice Hall, Inc., Englewood Cliffs (1973).
  26. S. Popovics, "Quantitative Deformation Model for Two-Phase Composites Including Concrete", Mater. Struct., 20, 171 (1987). https://doi.org/10.1007/BF02472733
  27. S. Popovics, and M. R. A. Erdey, "Estimation of the Modulus of Elasticity of Concrete-like Composite Materials", Mater. Struct., 3, 253 (1970).