DOI QR코드

DOI QR Code

Anti-inflammatory Effect of Branches Extracts from Quercus mongolica in LPS-induced RAW264.7 Cells

  • Eo, Hyun Ji (Forest Medicinal Resources Research Center, National Institute of Forest Science) ;
  • Park, Youngki (Forest Medicinal Resources Research Center, National Institute of Forest Science) ;
  • Kang, Jin Taek (Division of Forest Industry Research, National Institute of Forest Science) ;
  • Park, Gwang Hun (Forest Medicinal Resources Research Center, National Institute of Forest Science)
  • Received : 2019.11.13
  • Accepted : 2019.11.25
  • Published : 2019.12.31

Abstract

Quercus mongolica (QM), which belongs to fagaceae, is one of the oak native to Korea. We evaluated the anti-inflammatory effect of branches extracted with 70% ethanol of QM (QM-B) and elucidated the potential signaling pathway in LPS-induced RAW264.7 cells. The QM-B showed anti-inflammatory activity through inhibition of NO production. The QM-B dose-dependently suppressed NO production by inhibiting iNOS, COX-2 and IL-6 expression in LPS-induced RAW264.7 cells. The QM-B inhibited the degradation and phosphorylation of IκB-α and NF-κB activation. The QM-B suppressed the phosphorylation of p38 and ERK1/2. Also, the QM-B increased HO-1 expression. These results suggested that QM-B may utilize anti-inflammatory activity by suppressing NF-κB and MAPK signaling pathway and inducing HO-1 expression indicated that the QM-B can be used as a natural anti-inflammatory drugs.

Keywords

References

  1. Bak, J.P., J.B. Kim, J.H. Park, Y.J. Yang, I.S. Kim, E.S. Choung and S.C. Kang. 2011. Screening and compound isolation from natural plants for anti-allergic activity. J. Korean Soc. Appl. Biol. Chem. 54(3):367-375. https://doi.org/10.3839/jksabc.2011.058
  2. Davies, S.A., E.J. Stewart, G.R. Huesmaan, N.J. Skaer, S.H. Maddrell, N.J. Tublitz and J.A. Dow. 1997. Neuropeptide stimulation of the nitric oxide signalling pathway in Drosophila melanogaster Malpighian tubules. Am. J. Physiol. 273:823-827. https://doi.org/10.1152/ajpregu.1997.273.2.R823
  3. Doi, K., T. Akaike, S. Fujii, S. Tanaka, N. Ikebe, T. Beppu, S. Shibahara, M. Ogawa and H. Maeda. 1999. Induction of haem oxygenase-1 nitric oxide and ischaemia in experimental solid tumours and implications for tumour growth. Brit. J. Cancer 80(12):1945-1954. https://doi.org/10.1038/sj.bjc.6690624
  4. Eyssen-Hernandez, R., A. Ladoux, C. Frelin. 1996. Differential regulation of cardiac heme oxygenase-1 and vascular endothelial growth factor mRNA expressions by hemin, heavy metals, heat shock and anoxia. FEBS Lett. 382(3):229-233. https://doi.org/10.1016/0014-5793(96)00127-5
  5. Fang, J., T. Sawa, T. Akaike, T. Akuta, S.K. Sahoo, G. Khaled, A. Hamada and H. Maeda. 2003. In vivo antitumor activity of pegylated zinc protoporphyrin: targeted inhibition of heme oxygenase in solid tumor. Cancer Res. 63(13):3567-3574.
  6. Hou, Y.C., A. Janczuk and P.G. Wang. 1999. Current trends in the development of nitric oxide donors. Curr. Pharm. Design 5(6):417-441.
  7. Ignarro, L.J. 1990. Nitric Oxide. A novel signal transduction mechanism for transcellular communication. Hypertension 16(5):477-483. https://doi.org/10.1161/01.HYP.16.5.477
  8. Jung, J.H., H.R. Kim, E.J. Kim, K.E. Hwang, S.Y. Kim, J.H. Park, H.J. Kim, S.H. Yang and E.T. Jeong. 2006. The role of heme oxygenase-1 in lung cancer cells. Tuberc. Respir. Dis. 60(3):304-313. https://doi.org/10.4046/trd.2006.60.3.304
  9. Kaibori, M., K. Sakitani, M. Oda, Y. Kamiyama, Y. Masu, M. Nishizawa, S. Ito and T. Okumura. 1999. Immunosuppressant FK506 inhibits inducible nitric oxide synthase gene expression at a step of NF-kappaB activation in rat hepatocytes. J. Hepatol. 30(6):1138-1145. https://doi.org/10.1016/S0168-8278(99)80270-0
  10. Kim, J.B., A.R. Han, E.Y. Park, J.Y. Kim, W. Cho, J. Lee, E.K. Seo and K.T. Lee. 2007. Inhibition of LPS-induced iNOS, COX-2 and cytokines expression by poncirin through the NF-kappaB inactivation in RAW 264.7 macrophage cells. Biol. Pharm. Bull. 30(12):2345-2351. https://doi.org/10.1248/bpb.30.2345
  11. Kong, Y.J., T.S. Kang, M.K. Lee, B.K. Park and D.H. Oh. 2001a. Antimicrobial and antioxidative activities of solvent fractions of Quercus mongolica leaf. J. Korean Soc. Food Sci. Nutr. 30(2):338-343.
  12. Kong, Y.J., B.K. Park and D.H. Oh. 2001b. Antimicrobial activity of Quercus mongolica leaf ethanol extract and organic acids against food-borne microorganisms. Korean J. Food Sci. Technol. 33(2):178-183.
  13. Li, D., J. Chen, J. Ye, X. Zhai, J. Song, C. Jiang, J. Wang, H. Zhang, X. Jia and F. Zhu. 2017. Anti-inflammatory effect of the six compounds isolated from Nauclea officinalis Pierrc ex Pitard, and molecular mechanism of strictosamide via suppressing the NF-${\kappa}$B and MAPK signaling pathway in LPS-induced RAW 264.7 macrophages. J. Ethnopharmacol. 20:66-74.
  14. Paine, A., B. Eiz-Vesper, R. Blasczyk and S. Immenschuh. 2010. Signaling to heme oxygenase-1 and its anti-inflammatory therapeutic potential. Biochem. Pharmacol. 80(12):1895-1903. https://doi.org/10.1016/j.bcp.2010.07.014
  15. Park, S.B., H.M. Song, H.N. Kim, G.H. Park, H.J. Son, Y. Um, J.A. Park and J.B. Jeong. 2018. Anti-inflammatory effect of Biji (Soybean curd residue) on LPS-stimulated RAW264.7 cells. Korean J. Plant Res. 31(2):117-123. https://doi.org/10.7732/KJPR.2018.31.2.117
  16. Ran, X., Y. Li, G. Chen, S. Fu, D. He, B. Huang, L. Wei, Y. Lin, Y. Guo and G. Hu. 2018. Farrerol ameliorates TNBSInduced colonic inflammation by inhibiting ERK1/2, JNK1/2, and NF-${\kappa}$B signaling pathway. Int. J. Mol. Sci. 19:E2037. https://doi.org/10.3390/ijms19072037
  17. Tripathi, P., P. Tripathi, L.Kashyap and V. Singh. 2007. The role of nitric oxide in inflammatory reactions. FEMS Immunol. Med. Mic. 51(3):443-452. https://doi.org/10.1111/j.1574-695X.2007.00329.x
  18. Wang, C.Y., H.J. Jang, Y.K. Han, X.D. Su, S.W. Lee, M.C. Rho, H.S Wang, S.Y. Yang and Y.H. Kim. 2018. Alkaloids from Tetrastigma hemsleyanum and their anti-inflammatory effects on LPS-Induced RAW264.7 cells. Molecules 23(6):E1445. https://doi.org/10.3390/molecules23061445
  19. Wang, C.Y., S. Lee, H.J. Jang, X.D. Su, H.S. Wang, Y.H. Kim and S.Y. Yang. 2019. Inhibition potential of phenolic constituents from the aerial parts of Tetrastigma hemsleyanum against soluble epoxide hydrolase and nitric oxide synthase. J. Enzym. Inhib. Med. Ch. 34(1):753-760. https://doi.org/10.1080/14756366.2019.1584621
  20. Woo, H.S., S.M. Lee, D.H. Jeong, M.S. Lee, Y.S. Kim and D.W. Kim. 2018. Anti-inflammatory activity of extracts of Hovenia dulcis on lipopolysaccharides-stimulated RAW-264.7 cells. Korean J. Plant Res. 31(5):466-477. https://doi.org/10.7732/KJPR.2018.31.5.466
  21. Yeo, H.D., H.C. Lee, B. K. Lim, H.K. Kim, M.S. Choi and J.K. Yang. 2008. Antifungal activity of the Quercus Mongolica extracts against Botrytis cinerea. J. Korean Wood Sci. Technol. 36(1):88-101. https://doi.org/10.5658/WOOD.2008.36.1.088
  22. Yin, J., H.H. Kim, I.H. Hwang, D.H. Kim and M.W. Lee. 2019. Anti-Inflammatory effects of phenolic compounds isolated from Quercus Mongolica Fisch. ex Ledeb. on UVB-Irradiated human skin cells. Molecules 24(17):E3094. https://doi.org/10.3390/molecules24173094

Cited by

  1. Anti-Acne Vulgaris Effects of Pedunculagin from the Leaves of Quercus mongolica by Anti-Inflammatory Activity and 5α-Reductase Inhibition vol.25, pp.9, 2019, https://doi.org/10.3390/molecules25092154