DOI QR코드

DOI QR Code

First Report of an Unrecorded Nematode-trapping Fungus, Arthrobotrys sinensis in Korea

국내 미기록 선충포식성 곰팡이 Arthrobotrys sinensis의 형태 및 분류

  • Ha, Jihye (Department of Plant Bioscience, College of Natural Resource and Life Sciences, Pusan National University) ;
  • Kang, Heonil (Department of Plant Bioscience, College of Natural Resource and Life Sciences, Pusan National University) ;
  • Kang, Hangwon (Department of Plant Bioscience, College of Natural Resource and Life Sciences, Pusan National University) ;
  • Kim, Donggeun (Nematode Research Center, Life and Industry Convergence Research Institute, Pusan National University) ;
  • Lee, Dongwoon (School of Ecology and Environmental System, College of Ecology and Environmental Science, Kyungpook National University) ;
  • Kim, Yongchul (Department of Plant Bioscience, College of Natural Resource and Life Sciences, Pusan National University) ;
  • Choi, Insoo (Department of Plant Bioscience, College of Natural Resource and Life Sciences, Pusan National University)
  • 하지혜 (부산대학교 생명자원과학대학 식물생명과학과) ;
  • 강헌일 (부산대학교 생명자원과학대학 식물생명과학과) ;
  • 강항원 (부산대학교 생명자원과학대학 식물생명과학과) ;
  • 김동근 (부산대학교 생명산업융합연구원 선충연구센터) ;
  • 이동운 (경북대학교 생태환경대학 생태환경관광학부) ;
  • 김용철 (부산대학교 생명자원과학대학 식물생명과학과) ;
  • 최인수 (부산대학교 생명자원과학대학 식물생명과학과)
  • Received : 2018.10.07
  • Accepted : 2019.01.07
  • Published : 2019.03.01

Abstract

Nematode-trapping fungi use various specialized traps to capture nematodes. A fungus that can capture nematodes in three dimensional adhesive networks was isolated from the soil around the root of Cucumis melo L. (Oriental melon) in Seongju, Korea. The conidiophores were found to be septate, hyaline, erect and $290-528(342.8){\mu}m$ high. It produces obovoid shape and 1-3 septate (commonly 2-septate) conidia with a size of $30.5{\times}20.3{\mu}m$. Molecular analysis of 5.8 S rDNA displayed 99% similarity to Arthrobotrys sinensis. On the basis of morphological, morphometric and molecular studies, the fungus was identified as A. sinensis. It is the first report in Korea which can be one of biological control resource of plant-parasitic nematode.

선충포식성 곰팡이는 선충을 포획하기 위하여 다양하고 특수한 기관을 사용한다. 국내 성주지역의 참외 경작지 뿌리 주변의 토양에서 3차원 접착 고리를 형성하여 선충을 포획하는 곰팡이를 분리하였다. 곰팡이의 미세형태 구조를 관찰한 결과 분생포자병은 직립형으로 길이는 $290{\sim}528(342.8){\mu}m$으로 길었으며, 계란형의 $30.5{\times}20.3{\mu}m$ 크기를 가진 1~3개의 분생포자를 형성하였다. 균주의 rDNA의 5.8 S 영역의 염기서열을 분석한 결과, Arthrobotrys속의 계통군에 속하였으며, 특히 Arthrobotrys sinensis와 99%의 유사성을 보였다. 형태적 특징과 분자생물학적 계통 분석을 바탕으로 본 균주는 A. sinensis로 확인되었으며, 이는 국내 미기록종으로 식물기생성선충의 생물학적 조절을 위한 하나의 자원이 될 수 있다.

Keywords

OOGCBV_2019_v58n1_9_f0001.png 이미지

Fig. 1. Arthrobotrys sinensis. A-B, conidiophore; C-G, conidia; H, adhesive network. Bars = 20 µm (A, C, D, E, F, G, H) and 50 µm (B).

OOGCBV_2019_v58n1_9_f0002.png 이미지

Fig. 2. Nematode captured by trap (adhesive network). Bars = 20 µm.

OOGCBV_2019_v58n1_9_f0003.png 이미지

Fig. 3. Phylogenetic tree based on ITS sequence showing the position of strain SJCM-1 (MF592791) and related fungal taxa. Numbers at branches are bootstrap values, derived only for the nodes supported by greater than 50% (1,000 replicates). Bar, 0.02 substitutions per site.

Table 1. Morphological characteristics of different isolates Arthobotrys sinensis and its comparison to Korean isolate

OOGCBV_2019_v58n1_9_t0001.png 이미지

References

  1. Ahren, D., Tunlid, A., 2003. Evolution of parasitism in nematodetrapping fungi. J. Nematol. 35(2), 194-197.
  2. Barron, G.L., 1977. Nematode-destroying fungi, in: Barron, G.L. (Ed.), Topics in Mycobiology No.1. Lancaster Press, Inc., Lancaster Pennsylvania, pp. 140.
  3. Campos, R.A., Boldo, J.T., Pimentel, I.C., Dalfovo, V., Araujo, W.L., Azevedo, J.L., Vainstein, M.H., Barros, N.M., 2010. Endophytic and entomopathogenic strains of Beauveria sp. to control the bovine tick Rhipicephalus (Boophilus) microplus. Gen. Mol. Res. 9(3), 1421-1430. https://doi.org/10.4238/vol9-3gmr884
  4. Falbo, M.K., Soccol, V.T., Sandini, I.E., Vicente, V.A., Robl, D., Soccol, C.R., 2013. Isolation and characterization of the nematophagous fungus Arthrobotrys conoides. Parasitol. Res. 112(1), 177-185. https://doi.org/10.1007/s00436-012-3123-3
  5. Gray, N., 1987. Nematophagous fungi with particular reference to their ecology. Biol. Rev. 62, 245-304. https://doi.org/10.1111/j.1469-185X.1987.tb00665.x
  6. Liu, K., Zhang, W., Lai, Y., Xiang, M., Wang, X., Zhang, X., Liu, X., 2014. Drechslerella stenobrocha genome illustrates the mechanism of constricting rings and the origin of nematode predation in fungi. BMC Genomics. 15, 114. https://doi.org/10.1186/1471-2164-15-114
  7. Liu, X.Z., Zhang, K.Q., 1994. Nematode-trapping species of Monacrosporium with special reference to two new species. Mycol. Res. 98(8), 862-868. https://doi.org/10.1016/S0953-7562(09)80255-4
  8. Saitou, N., Nei, M., 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4(4), 406-425.
  9. Scholler, M., Hagedorn, G., Rubner, A., 1999. A reevaluation of predatory orbiliaceous fungi. II. A new generic concept. Sydowia 51(1), 89-113.
  10. White, T.J., Bruns, T., Lee, S. Taylor, J., 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics, in: Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J. (Eds.), PCR Protocols: a guide to methods and applications. Academic Press, San Diego, pp. 315-322.
  11. Wu, H.Y., Kim, D.G., 2010. First report of an unrecorded nematode-trapping fungus species Monacrosporium phymatopagum in Korea. Plant Pathol. J. 26(3), 264-266. https://doi.org/10.5423/PPJ.2010.26.3.264
  12. Yu, Z., Mo, M., Zhang, Y., Zhang, K.Q., 2014. Taxonomy of nematode-trapping fungi from Orbiliaceae, Ascomycota, in: Zhang, K.Q., Hyde, K.D. (Eds.), Nematode-Trapping Fungi. Fungal Diversity Research Series 23. Springer, Netherlands, pp. 41-210.
  13. Zhu, H., Qu, F., Zhu, L.H., 1993. Isolation of genomic DNAs from plants, fungi and bacteria using benzyl chloride. Nucleic Acids Res. 21(22), 5279-5280. https://doi.org/10.1093/nar/21.22.5279