DOI QR코드

DOI QR Code

Preparation and Characterization of Reduced Iron by Using Wastes as Auxiliary Fuels

폐기물을 보조연료로 이용한 환원철 제조 및 환원거동 분석

  • Je, Hyun-Mo (Energy Environment Materials Centet, Korea Institute of Ceramic Engineering and Technology (KICET)) ;
  • Kim, Kyoung-Seok (Energy Environment Materials Centet, Korea Institute of Ceramic Engineering and Technology (KICET)) ;
  • Chu, Yong-Sik (Energy Environment Materials Centet, Korea Institute of Ceramic Engineering and Technology (KICET)) ;
  • Roh, Dong-Kyu (Energy Environment Materials Centet, Korea Institute of Ceramic Engineering and Technology (KICET))
  • 제현모 (한국세라믹기술원 에너지환경소재센터) ;
  • 김경석 (한국세라믹기술원 에너지환경소재센터) ;
  • 추용식 (한국세라믹기술원 에너지환경소재센터) ;
  • 노동규 (한국세라믹기술원 에너지환경소재센터)
  • Received : 2018.11.05
  • Accepted : 2018.12.18
  • Published : 2019.02.28

Abstract

In this study, the wastes were used as fuels for direct reduction iron (DRI) production to reduce production cost and recycle the wastes. We examined the effects of wastes on the reduction behavior of DRI manufacture and the possibility of using wastes as auxiliary fuels. The proximate and Ultimate analysis were carried out to confirm the properties of wastes as fuels, and high-quality reduced irons were fabricated by using the waste as an auxiliary fuel. The metallization of reduced irons increased as the calorific value increase of auxiliary fuel. Especially, the reduced irons fabricated from the waste tires and vinyl plastics which had high heat energy and volatile matters showed higher metallization than the others. The high calorific value and volatility of waste were significant properties as fuel. The high quality DRI could be fabricated with wastes as auxiliary fuels through optimization of reaction conditions.

본 연구에서는 자원 재활용 및 생산비용 절감을 위해 폐기물을 국내 저급 철광석의 고품위 환원철(Direct Reduction Iron, DRI) 제조를 위한 보조연로로 사용하였으며, 폐기물이 환원철 제조에 미치는 영향을 알아보고자 한다. 석탄을 주연료 및 환원제로 사용하였으며, 폐기물을 보조연료로 사용하여 주연료의 대체 가능성을 확인하였다. 다양한 폐기물의 성상 및 발열량 분석을 통하여 연료 및 환원제로서의 가능성을 평가하였으며, 선별된 폐기물은 보조연료로 이용하여 반응온도 및 시간 제어를 통해 고품위 환원철을 제조하였다. 제조된 환원철은 금속화율 측정을 통해 산화철이 Fe 금속으로 환원이 잘 이루어졌음을 확인하였다. 환원철의 금속화율은 폐기물의 발열량이 높을수록 증가하는 경향을 보였으며, 특히 발열량과 휘발분 함량이 높은 페타이어와 폐비닐의 경우 $1,200^{\circ}C$에서 1시간 반응 조건에서 폐기물을 사용하지 않을 때 보다 더 높은 금속화율이 관찰 되었다. 고발열량의 휘발성 폐기물은 연료로써 우수한 물성을 가지고 있으며, 반응온도 및 시간의 최적화를 통해 고품위 환원철 제조를 위한 보조연료로 사용이 가능함을 확인하였다.

Keywords

RSOCB3_2019_v28n1_47_f0001.png 이미지

Fig. 1. Image of coal and wastes; (a) Anthracite coal, (b) waste tire, (c) waste vinyl, (d) wood pellet, (e) saw dust.

RSOCB3_2019_v28n1_47_f0002.png 이미지

Fig. 2. TGA analysis of varied fuels.

RSOCB3_2019_v28n1_47_f0003.png 이미지

Fig. 3. Metallization degree of reduction irons.

RSOCB3_2019_v28n1_47_f0004.png 이미지

Fig. 4. XRD patterns of pattern of iron ore (A) and reduction irons; (B) 1,100℃-3 hour, (C) 1,200℃-1 hour, (D) 1,250℃-1 hour.

Table 2. Proximate analysis of fuel samples

RSOCB3_2019_v28n1_47_t0001.png 이미지

Table 1. Chemical Composition of iron ore

RSOCB3_2019_v28n1_47_t0002.png 이미지

Table 3. Ultimate analysis of fuel samples

RSOCB3_2019_v28n1_47_t0003.png 이미지

Table 4. Summarization of metallization degree

RSOCB3_2019_v28n1_47_t0004.png 이미지

References

  1. Baikadi, A., Runkana, V., and Subramanian, S., 2016 : Operability Analysis of Direct Reduction of Iron Ore by Coal in an Industrial Rotary Kiln, IFAC-PapersOnLine 49(1), pp.468-473. https://doi.org/10.1016/j.ifacol.2016.03.098
  2. Dabin Guo, et al., 2015 : Kinetics and mechanisms of direct reduction of iron ore-biomass composite pellets with hydrogen gas, Int. J. Hydro. Energy, 40, pp.4733-4740. https://doi.org/10.1016/j.ijhydene.2015.02.065
  3. Ankit, Sethi, S., Mahobia, G. S., and Sinha, O. P., 2015 : Reduction behavior of iron ore pellets with addition of plastics along with conventional reducing agents, J. Metall. Mater. Sci., 57(3), pp.167-171.
  4. Milandia, A. and Oediyani, S., 2015 : Reduction of Low Grade Iron Ore Using a Mixture of Polyethilene (HDPE/LLDPE) and Coal as an Alternate Reductant, Adv. Mater. Res., 1112, pp.515-518. https://doi.org/10.4028/www.scientific.net/AMR.1112.515
  5. Oh, K. J., Lee, H. D., Seo, J. B., et al, 2010 : Pyrolytic Reaction Characteristics of a Mixed Fuel of Municipal Solid Wastes and Low-grade Anthracite, Journal of Korean Society of Environmental Engineers, 32(11), pp.1046-1053.
  6. Strezov, V., 2006 : Iron ore reduction using sawdust: Experimental analysis and kinetic modelling, Renewable Energy, 31, pp.1892-1905. https://doi.org/10.1016/j.renene.2005.08.032
  7. Hata, Y., et al., 2009 : Biotar Ironmaking Using Wooden Biomass and Nanoporous Iron Ore, Energy Fuels, 23, pp.1128-1131. https://doi.org/10.1021/ef800967h
  8. Hu, Q., et al., 2018 : Thermal behavior and reaction kinetics analysis of pyrolysis and subsequent in-situ gasification of torrefied biomass pellets, Energy Convers. Manage., 161, pp.205-214. https://doi.org/10.1016/j.enconman.2018.02.003
  9. Guo, D., et al., 2017 : Direct reduction of iron ore/biomass composite pellets using simulated biomass-derived syngas : Experimental analysis and kinetic modelling, Chem. Eng. J., 327, pp.822-830. https://doi.org/10.1016/j.cej.2017.06.118
  10. Zuo, H. B., Hu, Z. W., et al., 2013 : Direct reduction of iron ore by biomass char, Int. J. Miner., Metall. Mater., 20(6), pp.1-8. https://doi.org/10.1007/s12613-013-0686-7
  11. Alsaleh, A. and Sattler, M. L., 2014 : Waste Tire Pyrolysis: Influential Parameters and Product Properties, Curr. Sustainable/Renewable Energy Rep., 1, pp.129-135. https://doi.org/10.1007/s40518-014-0019-0
  12. Lee, G. J., 2015 : The Reaction Kinetic Study of SRF and Industrial Waste Using TGA (Thermo Gravimetric Analysis), New & Renewable Energy, 11(1), pp.20-26. https://doi.org/10.7849/ksnre.2015.03.1.020
  13. Kaantee, U., et al., 2004 : Cement manufacturing using alternative fuels and the advantages of process modelling, Fuel Process. Technol., 85, pp.293-301. https://doi.org/10.1016/S0378-3820(03)00203-0
  14. Conesa, J. A., et al., 2008 : Organic and inorganic pollutants from cement kiln stack feeding alternative fuels, J. Hazard. Mater., 158, pp.585-592. https://doi.org/10.1016/j.jhazmat.2008.01.116
  15. Nam, S. N., et al., 2009 : Impact of Input Wastes on Contents of Heavy Metals in Clinker and Cement, Journal of KSWM, 26(8), pp.694-701.
  16. Yun, Y. M., et al., 2015 : Phase Transition and Metalization of DRI According to the Quality of Iron Oxide, J. Korean Ceram. Soc., 52(5), pp.389-394. https://doi.org/10.4191/kcers.2015.52.5.389
  17. Murakami, T. and Kasai, E., 2011 : Reduction Mechanism of Iron Oxide-Carbon Composite with Polyethylene at Lower Temperature, ISIJ Int., 51(1), pp.9-13. https://doi.org/10.2355/isijinternational.51.9
  18. Liu, G. S., et al., 2004 : Thermal investigations of direct iron ore reduction with coal, Thermochim. Acta, 410, pp.133-140. https://doi.org/10.1016/S0040-6031(03)00398-8
  19. Man, Y., et al., 2014 : Influence of temperature and time on reduction behavior in iron ore-coal composite pellets, Powder Technol., 256, pp.361-366. https://doi.org/10.1016/j.powtec.2014.02.039
  20. Kim, D. W., et al., 2010 : Study on the Combustion Characteristics of Wood-pellet and Korean Anthracite Using TGA, Korean Chem. Eng. Res., 48, pp.58-67.