DOI QR코드

DOI QR Code

Piezoelectric Characteristics of Lead-Free 0.74(Bi0.5Na0.5)TiO3-0.26SrTiO3 Ceramics According to Calcination Temperature

무연 0.74(Bi0.5Na0.5)TiO3-0.26SrTiO3 압전 세라믹스의 하소온도 변화에 따른 전기적 특성 변화

  • Kim, Seong-Hyun (School of Materials Science and Engineering, University of Ulsan) ;
  • Lee, Sang-Hun (School of Materials Science and Engineering, University of Ulsan) ;
  • Han, Hyoung-Su (School of Materials Science and Engineering, University of Ulsan) ;
  • Lee, Jae-Shin (School of Materials Science and Engineering, University of Ulsan)
  • 김성현 (울산대학교 첨단소재공학부) ;
  • 이상훈 (울산대학교 첨단소재공학부) ;
  • 한형수 (울산대학교 첨단소재공학부) ;
  • 이재신 (울산대학교 첨단소재공학부)
  • Received : 2018.09.05
  • Accepted : 2018.10.19
  • Published : 2019.01.01

Abstract

In this study, we investigated the optimum calcination temperature of lead-free $0.74(Bi_{0.5}Na_{0.5})TiO_3-0.26SrTiO_3$(BNST) piezoelectric ceramics by analyzing the crystal structure, dielectric properties, and electric field-induced strain behavior. BNST ceramics prepared by conventional solid-state reaction methods at various calcination temperatures according to the industrial standard. All samples of BNST ceramics were subsequently sintered at $1,175^{\circ}C$ for 2 h. Crystal structure classification of the ceramics showed a single perovskite phase, with no second phase detectable for the samples calcined at $750^{\circ}C$ or higher. BNST samples calcined at $850^{\circ}C$ exhibited the most optimal values for itsand the common physical parameters of $density=5.518g/cm^3$, ${\varepsilon}=1,871.837$, $tan{\delta}=0.047$, and ${d_{33}}^*=874pm/V$.

Keywords

JJJRCC_2019_v32n1_35_f0001.png 이미지

Fig. 1. Linear shrinkage with calcination temperature.

JJJRCC_2019_v32n1_35_f0002.png 이미지

Fig. 2. Density with calcination temperature.

JJJRCC_2019_v32n1_35_f0003.png 이미지

Fig. 3. X-ray diffraction patterns with calcination temperature.

JJJRCC_2019_v32n1_35_f0004.png 이미지

Fig. 4. Dielectric constant and tanδ with calcination temperature.

JJJRCC_2019_v32n1_35_f0005.png 이미지

Fig. 5. The bipolar S-E loops with calcination temperature.

JJJRCC_2019_v32n1_35_f0006.png 이미지

Fig. 6. Smax/Emax in the bipolar with calcination temperature.

JJJRCC_2019_v32n1_35_f0007.png 이미지

Fig. 7. The unipolar S-E loops with calcination temperature.

JJJRCC_2019_v32n1_35_f0008.png 이미지

Fig. 8. Smax/Emax in the unipolar with calcination temperature.

Table 1. Characteristics of specimens.

JJJRCC_2019_v32n1_35_t0001.png 이미지

References

  1. B. Jaffe, W. R. Cook, and H. Jaffe, Piezoelectric Ceramics (Academic Press, London, 1971) p. 115.
  2. C. H. Hong, H. P. Kim, B. Y. Choi, H. S. Han, J. S. Son, C. W Ahn, and W. Jo, J. Mater., 2, 1 (2016). https://doi.org/10.1016/j.jmat.2015.12.002
  3. M. H. Lee and T. K. Song, Ceramist, 17, 32 (2014).
  4. J. Rodel, W. Jo, K.T.P. Seifert, E. M. Anton, T. Granzow, and D. Damjanovic, J. Am. Ceram. Soc., 92, 1153 (2009). [DOI: https://doi.org/10.1111/j.1551-2916.2009.03061.x]
  5. G. A. Smolenskii, V. A. Isupov, A. I. Agranovskaya, and N. N. Krainik, Sov. Phys. Solid State, 2, 2651 (1961).
  6. W. Krauss, D. Schutz, F. A. Mautner, A. Feteira, and K. Reichmann, J. Eur. Ceram. Soc., 30, 1827 (2010). [DOI: https://doi.org/10.1016/j.jeurceramsoc.2010.02.001]
  7. B. Parija, S. K. Rout, L. S. Cavalcante, A. Z. Simoes, S. Panigrahi, E. Longo, and N. C. Batista, Appl. Phys. A, 109, 715 (2012). https://doi.org/10.1007/s00339-012-7105-1
  8. M. Acosta, W. Jo, and J. Rodel, J. Am. Ceram. Soc., 97, 1937 (2014). [DOI: https://doi.org/10.1111/jace.12884]
  9. J. Koruza, V. Rojas, L. Molina-Luna, U. Kunz, M. Duerrschnabel, H. J. Kleebe, and M. Acosta, J. Eur. Ceram. Soc., 36, 1009 (2016). [DOI: https://doi.org/10.1016/j.jeurceramsoc. 2015.11.046]
  10. X. Liu, Z. Chen, D. Wu, B. Fang, J. Ding, X. Zhao, H. Xu, and H. Luo, Jpn. J. Appl. Phys., 54, 071501 (2015). [DOI: https://doi.org/10.7567/JJAP.54.071501]