DOI QR코드

DOI QR Code

Analysis of the Expression and Regulation of PD-1 Protein on the Surface of Myeloid-Derived Suppressor Cells (MDSCs)

  • Nam, Sorim (Division of Biological Sciences, Research Institute of Women's Health and Cellular Heterogeneity Research Center, Sookmyung Women's University) ;
  • Lee, Aram (Division of Biological Sciences, Research Institute of Women's Health and Cellular Heterogeneity Research Center, Sookmyung Women's University) ;
  • Lim, Jihyun (Division of Biological Sciences, Research Institute of Women's Health and Cellular Heterogeneity Research Center, Sookmyung Women's University) ;
  • Lim, Jong-Seok (Division of Biological Sciences, Research Institute of Women's Health and Cellular Heterogeneity Research Center, Sookmyung Women's University)
  • Received : 2018.10.16
  • Accepted : 2018.11.13
  • Published : 2019.01.01

Abstract

Myeloid-derived suppressor cells (MDSCs) that are able to suppress T cell function are a heterogeneous cell population frequently observed in cancer, infection, and autoimmune disease. Immune checkpoint molecules, such as programmed death 1 (PD-1) expressed on T cells and its ligand (PD-L1) expressed on tumor cells or antigen-presenting cells, have received extensive attention in the past decade due to the dramatic effects of their inhibitors in patients with various types of cancer. In the present study, we investigated the expression of PD-1 on MDSCs in bone marrow, spleen, and tumor tissue derived from breast tumor-bearing mice. Our studies demonstrate that PD-1 expression is markedly increased in tumor-infiltrating MDSCs compared to expression in bone marrow and spleens and that it can be induced by LPS that is able to mediate $NF-{\kappa}B$ signaling. Moreover, expression of PD-L1 and CD80 on $PD-1^+$ MDSCs was higher than on $PD-1^-$ MDSCs and proliferation of MDSCs in a tumor microenvironment was more strongly induced in $PD-1^+$ MDSCs than in $PD-1^-$ MDSCs. Although we could not characterize the inducer of PD-1 expression derived from cancer cells, our findings indicate that the study on the mechanism of PD-1 induction in MDSCs is important and necessary for the control of MDSC activity; our results suggest that $PD-1^+$ MDSCs in a tumor microenvironment may induce tumor development and relapse through the modulation of their proliferation and suppressive molecules.

Keywords

References

  1. Ahmadzadeh, M., Johnson, L. A., Heemskerk, B., Wunderlich, J. R., Dudley, M. E., White, D. E. and Rosenberg, S. A. (2009) Tumor antigen-specific CD8 T cells infiltrating the tumor express high levels of PD-1 and are functionally impaired. Blood 114, 1537-1544. https://doi.org/10.1182/blood-2008-12-195792
  2. Bai, J., Gao, Z., Li, X., Dong, L., Han, W. and Nie, J. (2017) Regulation of PD-1/PD-L1 pathway and resistance to PD-1/PD-L1 blockade. Oncotarget 8, 110693-110707. https://doi.org/10.18632/oncotarget.22690
  3. Bally, A. P., Lu, P., Tang, Y., Austin, J. W., Scharer, C. D., Ahmed, R. and Boss, J. M. (2015) NF-kappaB regulates PD-1 expression in macrophages. J. Immunol. 194, 4545-4554. https://doi.org/10.4049/jimmunol.1402550
  4. Condamine, T. and Gabrilovich, D. I. (2011) Molecular mechanisms regulating myeloid-derived suppressor cell differentiation and function. Trends Immunol. 32, 19-25. https://doi.org/10.1016/j.it.2010.10.002
  5. Daud, A. I., Loo, K., Pauli, M. L., Sanchez-Rodriguez, R., Sandoval, P. M., Taravati, K., Tsai, K., Nosrati, A., Nardo, L., Alvarado, M. D., Algazi, A. P., Pampaloni, M. H., Lobach, I. V., Hwang, J., Pierce, R. H., Gratz, I. K., Krummel, M. F. and Rosenblum, M. D. (2016) Tumor immune profiling predicts response to anti-PD-1 therapy in human melanoma. J. Clin. Invest. 126, 3447-3452. https://doi.org/10.1172/JCI87324
  6. Draghiciu, O., Lubbers, J., Nijman, H. W. and Daemen, T. (2015) Myeloid derived suppressor cells-An overview of combat strategies to increase immunotherapy efficacy. Oncoimmunology 4, e954829. https://doi.org/10.4161/21624011.2014.954829
  7. Fabbi, M., Carbotti, G. and Ferrini, S. (2015) Context-dependent role of IL-18 in cancer biology and counter-regulation by IL-18BP. J. Leukoc. Biol. 97, 665-675. https://doi.org/10.1189/jlb.5RU0714-360RR
  8. Gabrilovich, D. I., Ostrand-Rosenberg, S. and Bronte, V. (2012) Coordinated regulation of myeloid cells by tumours. Nat. Rev. Immunol. 12, 253-268. https://doi.org/10.1038/nri3175
  9. Gordon, S. R., Maute, R. L., Dulken, B. W., Hutter, G., George, B. M., McCracken, M. N., Gupta, R., Tsai, J. M., Sinha, R., Corey, D., Ring, A. M., Connolly, A. J. and Weissman, I. L. (2017) PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity. Nature 545, 495-499. https://doi.org/10.1038/nature22396
  10. Hoesel, B. and Schmid, J. A. (2013) The complexity of NF-kappaB signaling in inflammation and cancer. Mol. Cancer 12, 86. https://doi.org/10.1186/1476-4598-12-86
  11. Hu, X., Li, B., Li, X., Zhao, X., Wan, L., Lin, G., Yu, M., Wang, J., Jiang, X., Feng, W., Qin, Z., Yin, B. and Li, Z. (2014) Transmembrane TNF-alpha promotes suppressive activities of myeloid-derived suppressor cells via TNFR2. J. Immunol. 192, 1320-1331. https://doi.org/10.4049/jimmunol.1203195
  12. Huang, A., Zhang, B., Yan, W., Wang, B., Wei, H., Zhang, F., Wu, L., Fan, K. and Guo, Y. (2014) Myeloid-derived suppressor cells regulate immune response in patients with chronic hepatitis B virus infection through PD-1-induced IL-10. J. Immunol. 193, 5461-5469. https://doi.org/10.4049/jimmunol.1400849
  13. Huang, B., Lei, Z., Zhao, J., Gong, W., Liu, J., Chen, Z., Liu, Y., Li, D., Yuan, Y., Zhang, G. M. and Feng, Z. H. (2007) CCL2/CCR2 pathway mediates recruitment of myeloid suppressor cells to cancers. Cancer Lett. 252, 86-92. https://doi.org/10.1016/j.canlet.2006.12.012
  14. Jiang, M., Chen, J., Zhang, W., Zhang, R., Ye, Y., Liu, P., Yu, W., Wei, F., Ren, X. and Yu, J. (2017) Interleukin-6 trans-signaling pathway promotes immunosuppressive myeloid-derived suppressor cells via suppression of suppressor of cytokine signaling 3 in breast cancer. Front. Immunol. 8, 1840. https://doi.org/10.3389/fimmu.2017.01840
  15. Karyampudi, L., Lamichhane, P., Krempski, J., Kalli, K. R., Behrens, M. D., Vargas, D. M., Hartmann, L. C., Janco, J. M., Dong, H., Hedin, K. E., Dietz, A. B., Goode, E. L. and Knutson, K. L. (2016) PD-1 Blunts the Function of Ovarian Tumor-Infiltrating Dendritic Cells by Inactivating NF-kappaB. Cancer Res. 76, 239-250. https://doi.org/10.1158/0008-5472.CAN-15-0748
  16. Kumar, V., Patel, S., Tcyganov, E. and Gabrilovich, D. I. (2016) The nature of myeloid-derived suppressor cells in the tumor microenvironment. Trends Immunol. 37, 208-220. https://doi.org/10.1016/j.it.2016.01.004
  17. Landskron, G., De la Fuente, M., Thuwajit, P., Thuwajit, C. and Hermoso, M. A. (2014) Chronic inflammation and cytokines in the tumor microenvironment. J. Immunol. Res. 2014, 149185. https://doi.org/10.1155/2014/149185
  18. Leung, J. and Suh, W. K. (2014) The CD28-B7 family in anti-tumor immunity: emerging concepts in cancer immunotherapy. Immune Netw. 14, 265-276. https://doi.org/10.4110/in.2014.14.6.265
  19. Lewis, A. M., Varghese, S., Xu, H. and Alexander, H. R. (2006) Interleukin-1 and cancer progression: the emerging role of interleukin-1 receptor antagonist as a novel therapeutic agent in cancer treatment. J. Transl. Med. 4, 48. https://doi.org/10.1186/1479-5876-4-48
  20. Liu, Y., Yu, Y., Yang, S., Zeng, B., Zhang, Z., Jiao, G., Zhang, Y., Cai, L. and Yang, R. (2009) Regulation of arginase I activity and expression by both PD-1 and CTLA-4 on the myeloid-derived suppressor cells. Cancer Immunol. Immunother. 58, 687-697. https://doi.org/10.1007/s00262-008-0591-5
  21. Nam, S., Kang, K., Cha, J. S., Kim, J. W., Lee, H. G., Kim, Y., Yang, Y., Lee, M. S. and Lim, J. S. (2016) Interferon regulatory factor 4 (IRF4) controls myeloid-derived suppressor cell (MDSC) differentiation and function. J. Leukoc. Biol. 100, 1273-1284. https://doi.org/10.1189/jlb.1A0215-068RR
  22. Poschke, I., Mougiakakos, D., Hansson, J., Masucci, G. V. and Kiessling, R. (2010) Immature immunosuppressive CD14+HLA-DR-/low cells in melanoma patients are Stat3hi and overexpress CD80, CD83, and DC-sign. Cancer Res. 70, 4335-4345. https://doi.org/10.1158/0008-5472.CAN-09-3767
  23. Robertson, S. E., Young, J. D., Kitson, S., Pitt, A., Evans, J., Roes, J., Karaoglu, D., Santora, L., Ghayur, T., Liew, F. Y., Gracie, J. A. and McInnes, I. B. (2006) Expression and alternative processing of IL-18 in human neutrophils. Eur. J. Immunol. 36, 722-731. https://doi.org/10.1002/eji.200535402
  24. Said, E. A., Dupuy, F. P., Trautmann, L., Zhang, Y., Shi, Y., El-Far, M., Hill, B. J., Noto, A., Ancuta, P., Peretz, Y., Fonseca, S. G., Van Grevenynghe, J., Boulassel, M. R., Bruneau, J., Shoukry, N. H., Routy, J. P., Douek, D. C., Haddad, E. K. and Sekaly, R. P. (2010) Programmed death-1-induced interleukin-10 production by monocytes impairs $CD4^+$ T cell activation during HIV infection. Nat. Med. 16, 452-459. https://doi.org/10.1038/nm.2106
  25. Shin, J. and Jin, M. (2017) Potential immunotherapeutics for immunosuppression in sepsis. Biomol. Ther. (Seoul) 25, 569-577. https://doi.org/10.4062/biomolther.2017.193
  26. Sinha, P., Okoro, C., Foell, D., Freeze, H. H., Ostrand-Rosenberg, S. and Srikrishna, G. (2008) Proinflammatory S100 proteins regulate the accumulation of myeloid-derived suppressor cells. J. Immunol. 181, 4666-4675. https://doi.org/10.4049/jimmunol.181.7.4666
  27. Terme, M., Ullrich, E., Aymeric, L., Meinhardt, K., Desbois, M., Delahaye, N., Viaud, S., Ryffel, B., Yagita, H., Kaplanski, G., Prevost-Blondel, A., Kato, M., Schultze, J. L., Tartour, E., Kroemer, G., Chaput, N. and Zitvogel, L. (2011) IL-18 induces PD-1-dependent immunosuppression in cancer. Cancer Res. 71, 5393-5399. https://doi.org/10.1158/0008-5472.CAN-11-0993
  28. Trikha, P. and Carson, W. E., 3rd (2014) Signaling pathways involved in MDSC regulation. Biochim. Biophys. Acta 1846, 55-65.
  29. Tu, S., Bhagat, G., Cui, G., Takaishi, S., Kurt-Jones, E. A., Rickman, B., Betz, K. S., Penz-Oesterreicher, M., Bjorkdahl, O., Fox, J. G. and Wang, T. C. (2008) Overexpression of interleukin-1beta induces gastric inflammation and cancer and mobilizes myeloid-derived suppressor cells in mice. Cancer Cell 14, 408-419. https://doi.org/10.1016/j.ccr.2008.10.011
  30. Umansky, V., Blattner, C., Gebhardt, C. and Utikal, J. (2016) The role of myeloid-derived suppressor cells (MDSC) in cancer progression. Vaccines (Basel) 4, E36. https://doi.org/10.3390/vaccines4040036
  31. Yamazaki, T., Akiba, H., Iwai, H., Matsuda, H., Aoki, M., Tanno, Y., Shin, T., Tsuchiya, H., Pardoll, D. M., Okumura, K., Azuma, M. and Yagita, H. (2002) Expression of programmed death 1 ligands by murine T cells and APC. J. Immunol. 169, 5538-5545. https://doi.org/10.4049/jimmunol.169.10.5538
  32. Yang, L. and Zhang, Y. (2017) Tumor-associated macrophages: from basic research to clinical application. J. Hematol. Oncol. 10, 58. https://doi.org/10.1186/s13045-017-0430-2
  33. Yang, R., Cai, Z., Zhang, Y., Yutzy, W. H. t., Roby, K. F. and Roden, R. B. (2006) CD80 in immune suppression by mouse ovarian carcinoma-associated $Gr-1^+CD11b^+$ myeloid cells. Cancer Res. 66, 6807-6815. https://doi.org/10.1158/0008-5472.CAN-05-3755
  34. Yao, S., Wang, S., Zhu, Y., Luo, L., Zhu, G., Flies, S., Xu, H., Ruff, W., Broadwater, M., Choi, I. H., Tamada, K. and Chen, L. (2009) PD-1 on dendritic cells impedes innate immunity against bacterial infection. Blood 113, 5811-5818. https://doi.org/10.1182/blood-2009-02-203141
  35. Zamani, M. R., Aslani, S., Salmaninejad, A., Javan, M. R. and Rezaei, N. (2016) PD-1/PD-L and autoimmunity: a growing relationship. Cell Immunol. 310, 27-41. https://doi.org/10.1016/j.cellimm.2016.09.009
  36. Zhang, Y., Zhou, Y., Lou, J., Li, J., Bo, L., Zhu, K., Wan, X., Deng, X. and Cai, Z. (2010) PD-L1 blockade improves survival in experimental sepsis by inhibiting lymphocyte apoptosis and reversing monocyte dysfunction. Crit. Care 14, R220. https://doi.org/10.1186/cc9354

Cited by

  1. Past, Current, and Future of Immunotherapies for Prostate Cancer vol.9, 2019, https://doi.org/10.3389/fonc.2019.00884
  2. The role of myeloid-derived suppressor cells in the pathogenesis of rheumatoid arthritis; anti- or pro-inflammatory cells? vol.47, pp.1, 2019, https://doi.org/10.1080/21691401.2019.1687504
  3. Structure and Optimization of Checkpoint Inhibitors vol.12, pp.1, 2019, https://doi.org/10.3390/cancers12010038
  4. Tumour Regression via Integrative Regulation of Neurological, Inflammatory, and Hypoxic Tumour Microenvironment vol.28, pp.2, 2020, https://doi.org/10.4062/biomolther.2019.135
  5. Reciprocal Signaling between Myeloid Derived Suppressor and Tumor Cells Enhances Cellular Motility and is Mediated by Structural Cues in the Microenvironment vol.4, pp.6, 2020, https://doi.org/10.1002/adbi.202000049
  6. Rethinking immune checkpoint blockade: ‘Beyond the T cell’ vol.9, pp.1, 2019, https://doi.org/10.1136/jitc-2020-001460
  7. Improvement of PD-1 Blockade Efficacy and Elimination of Immune-Related Gastrointestinal Adverse Effect by mTOR Inhibitor vol.12, 2021, https://doi.org/10.3389/fimmu.2021.793831
  8. A Novel Anti-PD-L1 Antibody Exhibits Antitumor Effects on Multiple Myeloma in Murine Models via Antibody-Dependent Cellular Cytotoxicity vol.29, pp.2, 2021, https://doi.org/10.4062/biomolther.2020.131
  9. The Enigma of Low-Density Granulocytes in Humans: Complexities in the Characterization and Function of LDGs during Disease vol.10, pp.9, 2021, https://doi.org/10.3390/pathogens10091091
  10. Hallmarks of response, resistance, and toxicity to immune checkpoint blockade vol.184, pp.21, 2019, https://doi.org/10.1016/j.cell.2021.09.020
  11. Myeloid-derived suppressor cells (MDSCs) in brain cancer: challenges and therapeutic strategies vol.29, pp.6, 2021, https://doi.org/10.1007/s10787-021-00878-9