References
- Ahmadzadeh, M., Johnson, L. A., Heemskerk, B., Wunderlich, J. R., Dudley, M. E., White, D. E. and Rosenberg, S. A. (2009) Tumor antigen-specific CD8 T cells infiltrating the tumor express high levels of PD-1 and are functionally impaired. Blood 114, 1537-1544. https://doi.org/10.1182/blood-2008-12-195792
- Bai, J., Gao, Z., Li, X., Dong, L., Han, W. and Nie, J. (2017) Regulation of PD-1/PD-L1 pathway and resistance to PD-1/PD-L1 blockade. Oncotarget 8, 110693-110707. https://doi.org/10.18632/oncotarget.22690
- Bally, A. P., Lu, P., Tang, Y., Austin, J. W., Scharer, C. D., Ahmed, R. and Boss, J. M. (2015) NF-kappaB regulates PD-1 expression in macrophages. J. Immunol. 194, 4545-4554. https://doi.org/10.4049/jimmunol.1402550
- Condamine, T. and Gabrilovich, D. I. (2011) Molecular mechanisms regulating myeloid-derived suppressor cell differentiation and function. Trends Immunol. 32, 19-25. https://doi.org/10.1016/j.it.2010.10.002
- Daud, A. I., Loo, K., Pauli, M. L., Sanchez-Rodriguez, R., Sandoval, P. M., Taravati, K., Tsai, K., Nosrati, A., Nardo, L., Alvarado, M. D., Algazi, A. P., Pampaloni, M. H., Lobach, I. V., Hwang, J., Pierce, R. H., Gratz, I. K., Krummel, M. F. and Rosenblum, M. D. (2016) Tumor immune profiling predicts response to anti-PD-1 therapy in human melanoma. J. Clin. Invest. 126, 3447-3452. https://doi.org/10.1172/JCI87324
- Draghiciu, O., Lubbers, J., Nijman, H. W. and Daemen, T. (2015) Myeloid derived suppressor cells-An overview of combat strategies to increase immunotherapy efficacy. Oncoimmunology 4, e954829. https://doi.org/10.4161/21624011.2014.954829
- Fabbi, M., Carbotti, G. and Ferrini, S. (2015) Context-dependent role of IL-18 in cancer biology and counter-regulation by IL-18BP. J. Leukoc. Biol. 97, 665-675. https://doi.org/10.1189/jlb.5RU0714-360RR
- Gabrilovich, D. I., Ostrand-Rosenberg, S. and Bronte, V. (2012) Coordinated regulation of myeloid cells by tumours. Nat. Rev. Immunol. 12, 253-268. https://doi.org/10.1038/nri3175
- Gordon, S. R., Maute, R. L., Dulken, B. W., Hutter, G., George, B. M., McCracken, M. N., Gupta, R., Tsai, J. M., Sinha, R., Corey, D., Ring, A. M., Connolly, A. J. and Weissman, I. L. (2017) PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity. Nature 545, 495-499. https://doi.org/10.1038/nature22396
- Hoesel, B. and Schmid, J. A. (2013) The complexity of NF-kappaB signaling in inflammation and cancer. Mol. Cancer 12, 86. https://doi.org/10.1186/1476-4598-12-86
- Hu, X., Li, B., Li, X., Zhao, X., Wan, L., Lin, G., Yu, M., Wang, J., Jiang, X., Feng, W., Qin, Z., Yin, B. and Li, Z. (2014) Transmembrane TNF-alpha promotes suppressive activities of myeloid-derived suppressor cells via TNFR2. J. Immunol. 192, 1320-1331. https://doi.org/10.4049/jimmunol.1203195
- Huang, A., Zhang, B., Yan, W., Wang, B., Wei, H., Zhang, F., Wu, L., Fan, K. and Guo, Y. (2014) Myeloid-derived suppressor cells regulate immune response in patients with chronic hepatitis B virus infection through PD-1-induced IL-10. J. Immunol. 193, 5461-5469. https://doi.org/10.4049/jimmunol.1400849
- Huang, B., Lei, Z., Zhao, J., Gong, W., Liu, J., Chen, Z., Liu, Y., Li, D., Yuan, Y., Zhang, G. M. and Feng, Z. H. (2007) CCL2/CCR2 pathway mediates recruitment of myeloid suppressor cells to cancers. Cancer Lett. 252, 86-92. https://doi.org/10.1016/j.canlet.2006.12.012
- Jiang, M., Chen, J., Zhang, W., Zhang, R., Ye, Y., Liu, P., Yu, W., Wei, F., Ren, X. and Yu, J. (2017) Interleukin-6 trans-signaling pathway promotes immunosuppressive myeloid-derived suppressor cells via suppression of suppressor of cytokine signaling 3 in breast cancer. Front. Immunol. 8, 1840. https://doi.org/10.3389/fimmu.2017.01840
- Karyampudi, L., Lamichhane, P., Krempski, J., Kalli, K. R., Behrens, M. D., Vargas, D. M., Hartmann, L. C., Janco, J. M., Dong, H., Hedin, K. E., Dietz, A. B., Goode, E. L. and Knutson, K. L. (2016) PD-1 Blunts the Function of Ovarian Tumor-Infiltrating Dendritic Cells by Inactivating NF-kappaB. Cancer Res. 76, 239-250. https://doi.org/10.1158/0008-5472.CAN-15-0748
- Kumar, V., Patel, S., Tcyganov, E. and Gabrilovich, D. I. (2016) The nature of myeloid-derived suppressor cells in the tumor microenvironment. Trends Immunol. 37, 208-220. https://doi.org/10.1016/j.it.2016.01.004
- Landskron, G., De la Fuente, M., Thuwajit, P., Thuwajit, C. and Hermoso, M. A. (2014) Chronic inflammation and cytokines in the tumor microenvironment. J. Immunol. Res. 2014, 149185. https://doi.org/10.1155/2014/149185
- Leung, J. and Suh, W. K. (2014) The CD28-B7 family in anti-tumor immunity: emerging concepts in cancer immunotherapy. Immune Netw. 14, 265-276. https://doi.org/10.4110/in.2014.14.6.265
- Lewis, A. M., Varghese, S., Xu, H. and Alexander, H. R. (2006) Interleukin-1 and cancer progression: the emerging role of interleukin-1 receptor antagonist as a novel therapeutic agent in cancer treatment. J. Transl. Med. 4, 48. https://doi.org/10.1186/1479-5876-4-48
- Liu, Y., Yu, Y., Yang, S., Zeng, B., Zhang, Z., Jiao, G., Zhang, Y., Cai, L. and Yang, R. (2009) Regulation of arginase I activity and expression by both PD-1 and CTLA-4 on the myeloid-derived suppressor cells. Cancer Immunol. Immunother. 58, 687-697. https://doi.org/10.1007/s00262-008-0591-5
- Nam, S., Kang, K., Cha, J. S., Kim, J. W., Lee, H. G., Kim, Y., Yang, Y., Lee, M. S. and Lim, J. S. (2016) Interferon regulatory factor 4 (IRF4) controls myeloid-derived suppressor cell (MDSC) differentiation and function. J. Leukoc. Biol. 100, 1273-1284. https://doi.org/10.1189/jlb.1A0215-068RR
- Poschke, I., Mougiakakos, D., Hansson, J., Masucci, G. V. and Kiessling, R. (2010) Immature immunosuppressive CD14+HLA-DR-/low cells in melanoma patients are Stat3hi and overexpress CD80, CD83, and DC-sign. Cancer Res. 70, 4335-4345. https://doi.org/10.1158/0008-5472.CAN-09-3767
- Robertson, S. E., Young, J. D., Kitson, S., Pitt, A., Evans, J., Roes, J., Karaoglu, D., Santora, L., Ghayur, T., Liew, F. Y., Gracie, J. A. and McInnes, I. B. (2006) Expression and alternative processing of IL-18 in human neutrophils. Eur. J. Immunol. 36, 722-731. https://doi.org/10.1002/eji.200535402
-
Said, E. A., Dupuy, F. P., Trautmann, L., Zhang, Y., Shi, Y., El-Far, M., Hill, B. J., Noto, A., Ancuta, P., Peretz, Y., Fonseca, S. G., Van Grevenynghe, J., Boulassel, M. R., Bruneau, J., Shoukry, N. H., Routy, J. P., Douek, D. C., Haddad, E. K. and Sekaly, R. P. (2010) Programmed death-1-induced interleukin-10 production by monocytes impairs
$CD4^+$ T cell activation during HIV infection. Nat. Med. 16, 452-459. https://doi.org/10.1038/nm.2106 - Shin, J. and Jin, M. (2017) Potential immunotherapeutics for immunosuppression in sepsis. Biomol. Ther. (Seoul) 25, 569-577. https://doi.org/10.4062/biomolther.2017.193
- Sinha, P., Okoro, C., Foell, D., Freeze, H. H., Ostrand-Rosenberg, S. and Srikrishna, G. (2008) Proinflammatory S100 proteins regulate the accumulation of myeloid-derived suppressor cells. J. Immunol. 181, 4666-4675. https://doi.org/10.4049/jimmunol.181.7.4666
- Terme, M., Ullrich, E., Aymeric, L., Meinhardt, K., Desbois, M., Delahaye, N., Viaud, S., Ryffel, B., Yagita, H., Kaplanski, G., Prevost-Blondel, A., Kato, M., Schultze, J. L., Tartour, E., Kroemer, G., Chaput, N. and Zitvogel, L. (2011) IL-18 induces PD-1-dependent immunosuppression in cancer. Cancer Res. 71, 5393-5399. https://doi.org/10.1158/0008-5472.CAN-11-0993
- Trikha, P. and Carson, W. E., 3rd (2014) Signaling pathways involved in MDSC regulation. Biochim. Biophys. Acta 1846, 55-65.
- Tu, S., Bhagat, G., Cui, G., Takaishi, S., Kurt-Jones, E. A., Rickman, B., Betz, K. S., Penz-Oesterreicher, M., Bjorkdahl, O., Fox, J. G. and Wang, T. C. (2008) Overexpression of interleukin-1beta induces gastric inflammation and cancer and mobilizes myeloid-derived suppressor cells in mice. Cancer Cell 14, 408-419. https://doi.org/10.1016/j.ccr.2008.10.011
- Umansky, V., Blattner, C., Gebhardt, C. and Utikal, J. (2016) The role of myeloid-derived suppressor cells (MDSC) in cancer progression. Vaccines (Basel) 4, E36. https://doi.org/10.3390/vaccines4040036
- Yamazaki, T., Akiba, H., Iwai, H., Matsuda, H., Aoki, M., Tanno, Y., Shin, T., Tsuchiya, H., Pardoll, D. M., Okumura, K., Azuma, M. and Yagita, H. (2002) Expression of programmed death 1 ligands by murine T cells and APC. J. Immunol. 169, 5538-5545. https://doi.org/10.4049/jimmunol.169.10.5538
- Yang, L. and Zhang, Y. (2017) Tumor-associated macrophages: from basic research to clinical application. J. Hematol. Oncol. 10, 58. https://doi.org/10.1186/s13045-017-0430-2
-
Yang, R., Cai, Z., Zhang, Y., Yutzy, W. H. t., Roby, K. F. and Roden, R. B. (2006) CD80 in immune suppression by mouse ovarian carcinoma-associated
$Gr-1^+CD11b^+$ myeloid cells. Cancer Res. 66, 6807-6815. https://doi.org/10.1158/0008-5472.CAN-05-3755 - Yao, S., Wang, S., Zhu, Y., Luo, L., Zhu, G., Flies, S., Xu, H., Ruff, W., Broadwater, M., Choi, I. H., Tamada, K. and Chen, L. (2009) PD-1 on dendritic cells impedes innate immunity against bacterial infection. Blood 113, 5811-5818. https://doi.org/10.1182/blood-2009-02-203141
- Zamani, M. R., Aslani, S., Salmaninejad, A., Javan, M. R. and Rezaei, N. (2016) PD-1/PD-L and autoimmunity: a growing relationship. Cell Immunol. 310, 27-41. https://doi.org/10.1016/j.cellimm.2016.09.009
- Zhang, Y., Zhou, Y., Lou, J., Li, J., Bo, L., Zhu, K., Wan, X., Deng, X. and Cai, Z. (2010) PD-L1 blockade improves survival in experimental sepsis by inhibiting lymphocyte apoptosis and reversing monocyte dysfunction. Crit. Care 14, R220. https://doi.org/10.1186/cc9354
Cited by
- Past, Current, and Future of Immunotherapies for Prostate Cancer vol.9, 2019, https://doi.org/10.3389/fonc.2019.00884
- The role of myeloid-derived suppressor cells in the pathogenesis of rheumatoid arthritis; anti- or pro-inflammatory cells? vol.47, pp.1, 2019, https://doi.org/10.1080/21691401.2019.1687504
- Structure and Optimization of Checkpoint Inhibitors vol.12, pp.1, 2019, https://doi.org/10.3390/cancers12010038
- Tumour Regression via Integrative Regulation of Neurological, Inflammatory, and Hypoxic Tumour Microenvironment vol.28, pp.2, 2020, https://doi.org/10.4062/biomolther.2019.135
- Reciprocal Signaling between Myeloid Derived Suppressor and Tumor Cells Enhances Cellular Motility and is Mediated by Structural Cues in the Microenvironment vol.4, pp.6, 2020, https://doi.org/10.1002/adbi.202000049
- Rethinking immune checkpoint blockade: ‘Beyond the T cell’ vol.9, pp.1, 2019, https://doi.org/10.1136/jitc-2020-001460
- Improvement of PD-1 Blockade Efficacy and Elimination of Immune-Related Gastrointestinal Adverse Effect by mTOR Inhibitor vol.12, 2021, https://doi.org/10.3389/fimmu.2021.793831
- A Novel Anti-PD-L1 Antibody Exhibits Antitumor Effects on Multiple Myeloma in Murine Models via Antibody-Dependent Cellular Cytotoxicity vol.29, pp.2, 2021, https://doi.org/10.4062/biomolther.2020.131
- The Enigma of Low-Density Granulocytes in Humans: Complexities in the Characterization and Function of LDGs during Disease vol.10, pp.9, 2021, https://doi.org/10.3390/pathogens10091091
- Hallmarks of response, resistance, and toxicity to immune checkpoint blockade vol.184, pp.21, 2019, https://doi.org/10.1016/j.cell.2021.09.020
- Myeloid-derived suppressor cells (MDSCs) in brain cancer: challenges and therapeutic strategies vol.29, pp.6, 2021, https://doi.org/10.1007/s10787-021-00878-9