DOI QR코드

DOI QR Code

Cis-3-O-p-hydroxycinnamoyl Ursolic Acid Induced ROS-Dependent p53-Mediated Mitochondrial Apoptosis in Oral Cancer Cells

  • Wang, Ching-Ying (Department of Medical Laboratory Science and Biotechnology, China Medical University) ;
  • Lin, Chen-Sheng (Division of Gastroenterology, Kuang Tien General Hospital) ;
  • Hua, Chun-Hung (Department of Otolaryngology, China Medical University Hospital) ;
  • Jou, Yu-Jen (Department of Medical Laboratory Science and Biotechnology, China Medical University) ;
  • Liao, Chi-Ren (Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University) ;
  • Chang, Yuan-Shiun (Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University) ;
  • Wan, Lei (Department of Medical Genetics and Medical Research, China Medical University Hospital) ;
  • Huang, Su-Hua (Department of Biotechnology, Asia University) ;
  • Hour, Mann-Jen (School of Pharmacy, China Medical University) ;
  • Lin, Cheng-Wen (Department of Medical Laboratory Science and Biotechnology, China Medical University)
  • Received : 2017.12.04
  • Accepted : 2018.08.08
  • Published : 2019.01.01

Abstract

Cis-3-O-p-hydroxycinnamoyl ursolic acid (HCUA), a triterpenoid compound, was purified from Elaeagnus oldhamii Maxim. This traditional medicinal plant has been used for treating rheumatoid arthritis and lung disorders as well as for its anti-inflammation and anticancer activities. This study aimed to investigate the anti-proliferative and apoptotic-inducing activities of HCUA in oral cancer cells. HCUA exhibited anti-proliferative activity in oral cancer cell lines (Ca9-22 and SAS cells), but not in normal oral fibroblasts. The inhibitory concentration of HCUA that resulted in 50% viability was $24.0{\mu}M$ and $17.8{\mu}M$ for Ca9-22 and SAS cells, respectively. Moreover, HCUA increased the number of cells in the sub-G1 arrest phase and apoptosis in a concentration-dependent manner in both oral cancer cell lines, but not in normal oral fibroblasts. Importantly, HCUA induced p53-mediated transcriptional regulation of pro-apoptotic proteins (Bax, Bak, Bim, Noxa, and PUMA), which are associated with mitochondrial apoptosis in oral cancer cells via the loss of mitochondrial membrane potential. HCUA triggered the production of intracellular reactive oxygen species (ROS) that was ascertained to be involved in HCUA-induced apoptosis by the ROS inhibitors YCG063 and N-acetyl-L-cysteine. As a result, HCUA had potential antitumor activity to oral cancer cells through eliciting ROS-dependent and p53-mediated mitochondrial apoptosis. Overall, HCUA could be applicable for the development of anticancer agents against human oral cancer.

Keywords

References

  1. Cai, Q., Lin, J., Zhang, L., Lin, J., Wang, L., Chen, D. and Peng, J. (2017) Comparative proteomics-network analysis of proteins responsible for ursolic acid-induced cytotoxicity in colorectal cancer cells. Tumour. Biol. 39, 1010428317695015.
  2. Chang, C. F., Kuo, Y. L., Pu, C.and Chou, Y. J. (2016) Neck dissection and stroke in patients with oral cavity cancer: a population-based cohort study. Head Neck 39, 63-70.
  3. Chen, J., Fu, H., Wang, Z., Yin, F., Li, J., Hua, Y. and Cai, Z. (2014) A new synthetic ursolic acid derivative IUA with anti-tumor efficacy against osteosarcoma cells via inhibition of JNK signaling pathway. Cell Physiol. Biochem 34, 724-733. https://doi.org/10.1159/000363037
  4. Chipuk, J. E., Moldoveanu, T., Llambi, F., Parsons, M. J. and Green, D. R. (2010) The BCL-2 family reunion. Mol. Cell 37, 299-310. https://doi.org/10.1016/j.molcel.2010.01.025
  5. Dar, B. A., Lone, A. M., Shah, W. A. and Qurishi, M. A. (2016) Synthesis and screening of ursolic acid-benzylidine derivatives as potential anti-cancer agents. Eur. J. Med. Chem. 111, 26-32. https://doi.org/10.1016/j.ejmech.2016.01.026
  6. Dong, H., Yang, X., Xie, J., Xiang, L., Li, Y., Ou, M., Chi, T., Liu, Z., Yu. S., Gao, Y., Chen, J., Shao, J. and Jia, L. (2015) UP12, a novel ursolic acid derivative with potential for targeting multiple signaling pathways in hepatocellular carcinoma. Biochem. Pharmacol. 93, 151-162. https://doi.org/10.1016/j.bcp.2014.11.014
  7. Du, H., Chen, J., Tian, S., Gu, H., Li, N., Sun, Y., Ru, J. and Wang, J. (2016) Extraction optimization, preliminary characterization and immunological activities in vitro of polysaccharidesfrom Elaeagnus angustifolia L. pulp. Carbohydr. Polym. 151, 348-357. https://doi.org/10.1016/j.carbpol.2016.05.068
  8. Dumaz, N. and Meek, D.W. (1999) Serine15 phosphorylation stimulated p53 transactivation but does not directly influence interaction with HDM2. EMBO J. 18, 7002-7010. https://doi.org/10.1093/emboj/18.24.7002
  9. Guo, Y., Zhang, W., Yan, Y. Y., Ma, C. G., Wang, X., Wang, C. and Zhao, J. L. (2013) Triterpenoid pristimerin induced HepG2 cells apoptosis through ROS-mediated mitochondrial dysfunction. J. BUON 18, 477-485.
  10. Ito, K., Nakazato, T., Yamato, K., Miyakawa, Y., Yamada, T., Hozumi, N., Segawa, K., Ikeda, Y. and Kizaki, M. (2004) Induction of apoptosis in leukemic cells by homovanillic acid derivative, capsaicin, through oxidative stress: implication of phosphorylation of p53 at Ser-15 residue by reactive oxygen species. Cancer Res. 64, 1071-1078. https://doi.org/10.1158/0008-5472.CAN-03-1670
  11. Jou, Y. J., Chen, C. J., Liu, Y. C., Way, T. D., Lai, C. H, Hua, C. H., Wang, C. Y., Huang, S. H., Kao, J. Y. and Lin, C. W. (2015) Quantitative phosphoproteomic analysis reveals ${\gamma}$-bisabolene inducing p53-mediated apoptosis of human oral squamous cell carcinoma via HDAC2 inhibition and ERK1/2 activation. Proteomics 15, 3296-3309. https://doi.org/10.1002/pmic.201400568
  12. Jou, Y. J., Hua, C. C., Lin, C. S., Wang, C. Y., Wan, L., Lin, Y. J., Huang, S. H.and Lin, C. W. (2016) Anticancer activity of -bisabolene in human neuroblastoma cells via induction of p53-mediated mitochondrial apoptosis. Molecules 21, 21050601.
  13. Kim, H., Ramirez, C. N., Su, Z. Y. and Kong, A. N. (2016) Epigenetic modifications of triterpenoid ursolic acid in activating Nrf2 and blocking cellular transformation of mouse epidermal cells. J. Nutr. Biochem. 33, 54-62. https://doi.org/10.1016/j.jnutbio.2015.09.014
  14. Ko, Y. C., Huang, Y. L., Lee, C. H., Chen, M. J., Lin, L.M. and Tsai, C.C. (1995) Betel quid chewing, cigarette smoking and alcohol consumption related to oral cancer in Taiwan. J. Oral Pathol. Med. 24, 450-453. https://doi.org/10.1111/j.1600-0714.1995.tb01132.x
  15. Li, W., Zhang, H., Nie, M., Tian, Y., Chen, X., Chen, C., Chen, H. and Liu, R. (2017) Ursolic acid derivative FZU-03,010 inhibits STAT3 and induces cell cycle arrest and apoptosis in renal and breast cancer cells. Acta Biochim. Biophys. Sin. (Shanghai) 49, 367-373. https://doi.org/10.1093/abbs/gmx012
  16. Li, G. X., Hu, H., Jiang, C., Schuster, T. and Lu, J. (2007) Differential involvement of reactive oxygen species in apoptosis induced by two classes of selenium compounds in human prostate cancer cells. Int. J. Cancer 120, 2034-2043. https://doi.org/10.1002/ijc.22480
  17. Liang, S., Yang, R., Dong, C. and Yang, Q. (2015) Physicochemical Properties and Fatty Acid Profiles of Elaeagnus mollis Diels Nut Oils. J. Oleo Sci. 64, 1267-1272. https://doi.org/10.5650/jos.ess15158
  18. Liao, C. R., Chang, Y. S., Peng, W. H., Lai, S. C. and Ho, Y. L. (2012) Analgesic and anti-inflammatory activities of the methanol extract of Elaeagnus oldhamii Maxim. in mice. Am. J. Chin. Med. 40, 581-597. https://doi.org/10.1142/S0192415X12500449
  19. Liao, C. R., Ho, Y. L., Huang, G. J., Yang, C. S., Chao, C. Y., Chang, Y. S. and Kuo, Y. H. (2013) One lignanoid compound and four triterpenoid compounds with anti-inflammatory activity from the leaves of Elaeagnus oldhamii maxim. Molecules 18, 13218-13227. https://doi.org/10.3390/molecules181113218
  20. Liao, C. R., Kuo, Y. H., Ho, Y. L., Wang, C. Y., Yang, C. S., Lin, C. W. and Chang, Y. S. (2014) Studies on cytotoxic constituents from the leaves of Elaeagnus oldhamii maxim. in non-small cell lung cancer A549 cells. Molecules 19, 9515-9534. https://doi.org/10.3390/molecules19079515
  21. Lin, J., Chen, Y. and Wei, L. (2013) Ursolic acid inhibits colorectal cancer angiogenesis through suppression of multiple signaling pathways. Int. J. Oncol. 43, 1666-1674. https://doi.org/10.3892/ijo.2013.2101
  22. Lin, W. J., Jiang, R. S., Wu, S. H., Chen, F. J. and Liu, S. A. (2011) Smoking, alcohol, and betel quid and oral cancer: a prospective cohort study. J. Oncol. 2011, 525976.
  23. Liu, Z., Lu, H., Shi, H., Du, Y., Yu, J., Gu, S., Chen, X., Liu, K. J. and Hu, C. A. (2005) PUMA overexpression induces reactive oxygen species generation and proteasome-mediated stathmin degradation in colorectal cancer cells. Cancer Res. 65, 1647-1654. https://doi.org/10.1158/0008-5472.CAN-04-1754
  24. Long, X., Goldenthal, M. J. and Marin-Garcia, J. (2007) Oxidative stress enhances phosphorylation of p53 in neonatal cadiomyocytes. Mol. Cell. Biochem. 303, 167-174. https://doi.org/10.1007/s11010-007-9470-1
  25. Macip, S., Igarashi, M., Berggren, P., Yu, J., Lee, S. W. and Aaronson, S. A. (2003) Influence of induced reactive oxygen species in p53-mediated cell fate decisions. Mol. Cell. Biol. 23, 8576-8585. https://doi.org/10.1128/MCB.23.23.8576-8585.2003
  26. Mancini, F. and Moretti, F. (2011) Mitochondrial MDM4 (MDMX): an unpredicted role in the p53-mediated intrinsic apoptotic pathway. Cell Cycle 8, 3854-3859. https://doi.org/10.4161/cc.8.23.10089
  27. Manu, K. and Kuttan, G. (2008) Ursolic acid induces apoptosis by activating p53 and caspase-3 gene expressions and suppressing NF-kappaB mediated activation of bcl-2 in B16F-10 melanoma cells. Int. Immunopharmacol. 8, 974-981 https://doi.org/10.1016/j.intimp.2008.02.013
  28. Mendes, V. I., Bartholomeusz, G. A., Gandhi, V. and Salvador, A. (2016) Synthesis and cytotoxic activity of novel A-ring cleaved ursolic acid derivatives in human non-small cell lungcancer cells. Eur. J. Med. Chem. 123, 317-331. https://doi.org/10.1016/j.ejmech.2016.07.045
  29. Misra, S., Chaturvedi, A. and Misra, N. C. (2008) Management of gingivobuccal complex cancer. Ann. R. Coll. Surg. Engl. 90, 546-553. https://doi.org/10.1308/003588408X301136
  30. Nakanishi, T., Song, Y., He, C., Wang, D., Morita, K., Tsukada, J., Kanazawa, T. and Yoshida, Y. (2016) Relationship between triterpenoid anticancer drug resistance, autophagy, and caspase-1 in adult T-cell leukemia. PeerJ 4, e2026. https://doi.org/10.7717/peerj.2026
  31. Nakano, K. and Vousden, K. H. (2001) PUMA a novel proapoptotic gene, is induced by p53. Mol. Cell 7, 683-694. https://doi.org/10.1016/S1097-2765(01)00214-3
  32. Neville, B. W. and Day, T. A. (2002) Oral cancer and precancerous lesions. CA Cancer J. Clin. 52, 195-215. https://doi.org/10.3322/canjclin.52.4.195
  33. Oda, E., Ohki, R., Murasawa, H., Shibue, T., Yamashita, T., Tokino, T., Taniguchi, T. and Tanaka, N. (2000) Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science 288, 1053-1058. https://doi.org/10.1126/science.288.5468.1053
  34. Ou, X., Liu, M. and Luo, H. (2014) Ursolic acid inhibits leucine-stimulated mTORC1 signaling by suppressing mTOR localization to lysosome. PLoS ONE 9, e95393. https://doi.org/10.1371/journal.pone.0095393
  35. Panahi, Y., Alishiri, G. H., Bayat, N., Hosseini, S. M. and Sahebkar, A. (2016) Efficacy of Elaeagnus Angustifolia extract in the treatment of knee osteoarthritis: a randomized controlled trial. EXCLI J. 15, 203-210.
  36. Parkin, D. M., Bray, F., Ferlay, J. and Pisani, P. (2005) Global cancer statistics, 2002. CA Cancer J. Clin. 55, 74-108. https://doi.org/10.3322/canjclin.55.2.74
  37. Ren, L., Cao, Q. X., Zhai, F. R., Yang, S. Q. and Zhang, H. X. (2016) Asiatic acid exerts anticancer potential in human ovarian cancer cells via suppression of PI3K/Akt/mTOR signalling. Pharm. Biol. 54, 2377-2382. https://doi.org/10.3109/13880209.2016.1156709
  38. Samhan-Arias, A. K., Martin-Romero, F. J. and Gutierrez-Merino, C. (2004) Kaempferol blocks oxidative stress in cerebellar granule cells and reveals a key role for reactive oxygen species production at the plasma membrane in the commitment to apoptosis. Free. Radic. Biol. Med. 37, 48-61. https://doi.org/10.1016/j.freeradbiomed.2004.04.002
  39. Shanaz, T. A. R., Dellaire, G., Cuddihy, A., Jalali, F., Vaid, M., Coackley, C., Folkard, M., Xu, Y., Chen, P. C., Chen, D. J., Lilge, L., Prise, K. M., Jones, D. P. B. and Bristow, R. G. (2005) Evidence for the direct binding of phosphorylated p53 to sites of DNA breaks in vivo. Cancer Res. 65, 10810-10821. https://doi.org/10.1158/0008-5472.CAN-05-0729
  40. Shi, Y., Nikulenkov, F., Zawacka-Pankau, J., Li, H., Gabdoulline, R., Xu, J., Eriksson, S., Hedstrom, E., Issaeva, N., Kel, A., Arner, E. S. and Selivanova, G. (2014) ROS-dependent activation of JNK converts p53 into an efficient inhibitor of oncogenes leading to robust apoptosis. Cell Death Differ. 21, 612-623. https://doi.org/10.1038/cdd.2013.186
  41. Su, C. C., Lin, Y. Y., Chang, T. K., Chiang, C. T., Chung, J. A., Hsu, Y. Y. and Lian, I. B. (2010) Incidence of oral cancer in relation to nickel and arsenic concentrations in farm soils of patients' residential areas in Taiwan. BMC Public. Health 10, 67. https://doi.org/10.1186/1471-2458-10-67
  42. Sturgis, E. M. (2004) A review of social and behavioral efforts at oral cancer preventions in India. Head Neck 26, 937-944. https://doi.org/10.1002/hed.20075
  43. Takeba, Y., Kumai, T., Matsumoto, N., Nakaya, S., Tsuzuki, Y., Yanagids, Y. and Kobayashi, S. (2007) Irinotecan activates p53 with its active metabolite, resulting in human hepatocellular carcinoma apoptosis. J. Pharmacol. Sci. 104, 232-242. https://doi.org/10.1254/jphs.FP0070442
  44. Vokes, E. E., Weichselbaum, R. R., Lippman, S. M. and Hong, W. K. (1993) Head and neck cancer. N. Engl. J. Med. 328, 184-194. https://doi.org/10.1056/NEJM199301213280306
  45. Wang, C. Y., Huang, S. C., Zhang, Y., Lai, Z. R., Kung, S. H., Chang, Y. S. and Lin, C. W. (2012) Antiviral ability of kalanchoe gracilis leaf extract against Enterovirus 71 and coxsackievirus A16. Evid. Based Complement. Alternat. Med. 2012, 503165.
  46. Wu, J., Lei, H., Zhang, J., Chen, X., Tang, C., Wang, W., Xu, H., Xiao, W., Gu, W. and Wu, Y. (2016) Momordin Ic, a new natural SENP1 inhibitor, inhibits prostate cancer cell proliferation. Oncotarget 7, 58995-59005. https://doi.org/10.18632/oncotarget.10636
  47. Xiang, L., Chi, T. and Tang Q. (2015) A pentacyclic triterpene natural product, ursolic acid and its prodrug US597 inhibit targets within cell adhesion pathway and prevent cancer metastasis. Oncotarget 6, 9295-9312. https://doi.org/10.18632/oncotarget.3261
  48. Yan, Y. Y., Bai, J. P., Xie, Y., Yu, J. Z. and Ma, C. G. (2013) The triterpenoid pristimerin induces U87 glioma cell apoptosis through reactive oxygen species-mediated mitochondrial dysfunction. Oncol. Lett. 5, 242-248. https://doi.org/10.3892/ol.2012.982
  49. Yang, T. C., Li, S. W., Lai, C. C., Lu, K. Z., Chiu, M. T., Hsieh, T. H., Wan, L. and Lin, C. W. (2013) Proteomic analysis for Type I interferon antagonism of Japanese encephalitis virus NS5 protein. Proteomics 13, 3442-3456. https://doi.org/10.1002/pmic.201300001
  50. Yen, C. Y., Chiu, C. C., Haung, R. W., Yen, C. C., Huang, K. J., Chang, K. F., Hseu, Y. C., Chang, F. R., Chang, H. W. and Wu, Y. C. (2012) Antiproliferative effects of goniothalamin on Ca9-22 oral cancer cells through apoptosis, DNA damage and ROS induction. Mutat. Res. 747, 253-258. https://doi.org/10.1016/j.mrgentox.2012.06.003
  51. Yin, R., Li, T., Tian, J., Xi, P. and Liu, R. H. (2016) Ursolic acid, a potential anticancer compound for breast cancer therapy. Crit. Rev. Food Sci. Nutr. 28, 1-7.
  52. Zhang, D. M., Tang, P. M. K. and Chan, J. Y. W. (2007) Anti-proliferative effect of ursolic acid on multidrug resistant hepatoma cells R-HepG2 by apoptosis induction. Cancer Biol. Ther. 6, 1377-1385. https://doi.org/10.4161/cbt.6.9.4528

Cited by

  1. Low Concentration of Withaferin a Inhibits Oxidative Stress-Mediated Migration and Invasion in Oral Cancer Cells vol.10, pp.5, 2019, https://doi.org/10.3390/biom10050777
  2. Advances in the Study of Structural Modification and Biological Activities of Ursolic Acid vol.41, pp.8, 2019, https://doi.org/10.6023/cjoc202102032