DOI QR코드

DOI QR Code

Protective Effect of Cryoprotectants on the Viability of Freeze-Dried Lactobacillus fermentum SK152

동결건조한 Lactobacillus fermentum SK152 균주의 생존율에 미치는 동결보호제의 효과

  • Received : 2019.09.27
  • Accepted : 2019.09.30
  • Published : 2019.09.30

Abstract

This study was conducted to investigate the effect of cryoprotectants on the storage stability of Lactobacillus fermentum SK152, which was isolated as a probiotic candidate. Solutions of 10% glucose, trehalose, dextrin, and skim milk powder were used as cryoprotectants. The survival rates of L. fermentum SK152 after freeze-drying were 5.6% (dextrin), 2.2% (skim milk powder), 1.7% (glucose), and 1.5% (trehalose), suggesting that dextrin was most effective at minimizing the cell death of L. fermentum SK152 by lyophilization. The survival rates of L. fermentum SK152 stored at 4℃ ranged from 37% (dextrin)-90% (skim milk powder) after 8 weeks, while those at 20℃ ranged from 4% (dextrin)-12% (skim milk powder) after 7 weeks, indicating that skim milk powder was the best at minimizing the cell death of L. fermentum SK152 during storage, irrespective of storage temperature, among the cryoprotectants used.

L. fermentum SK152의 동결건조에 의한 생균수 감소에 동결보호제가 미치는 영향을 조사하기 위해, 균체를 dextrin, skim milk powder, glucose, trehalose 10% 용액에 각각 현탁한 후에 동결건조하였다. 동결건조 후의 생존율은 각각 5.6%(dextrin), 2.2%(skim milk powder), 1.7%(glucose), 1.5%(trehalose)로서, dextrin을 첨가한 경우에 생존률이 가장 높게 나타났다. 동결건조한 L. fermentum SK152를 냉장(4℃) 및 상온(20℃)에 7-8주간 저장하면서 동결보호제의 종류에 따른 생존률을 조사한 결과, 4℃ 보관 시에는 동결보호제의 종류에 상관없이 저장기간이 길어져도 생존률이 서서히 감소하는 경향을 나타내었다. 저장 8주 후의 생존률은 37%(dextrin)-90%(skim milk powder)에 이르렀으며, skim milk powder 첨가시에 가장 높은 생존률을 나타내었다. 한편, 20℃ 보관 시에는 동결보호제의 종류에 상관없이 저장기간에 길어질수록 4℃에 비하여 생존률이 급격히 감소하는 경향을 나타내었다. 저장 7주 후의 생존률은 4%(dextrin)-12%(skim milk powder)에 이르렀으며, 이중 가장 높은 생존률을 나타낸 동결보호제는 skim milk powder이었다.

Keywords

References

  1. FAO/WHO. Guidelines for the evaluation of probiotics in food [Internet]. 2002. [cited 2019 Jun 15] Available from: https://www.who.int/foodsafety/fs_management/en/probiotic_guidelines.pdf.
  2. Azad AK, Sarker M, Li T, Yin J. Probiotic species in the modulation of gut microbiota: an overview. Biomed Res Int. 2018;9478630. https://doi.org/10.1155/2018/9478630
  3. Jung MY, Park YH, Kim HS, Poo H, Chang YH. Probiotic property of Lactobacillus pentosus Miny-148 isolated from human feces. Korean J Microbiol. 2009;45:177-184.
  4. Seo YE, Yoon YH, Kim SJ. Functionality and safety of probiotics. J Milk Sci Biotechnol. 2019;37:94-101. https://doi.org/10.22424/jmsb.2019.37.2.94
  5. Seo JG, Lee GS, Kim JE, Chung MJ. Development of probiotic products and challenges. Korean Soc Biotechnol Bioeng J. 2010;25:303-310.
  6. Miyamoto-Shinohara Y, Sukenobe J, Imaizumi T, Nakahara T. Survival of freeze-dried bacteria. J Gen Appl Microbiol. 2008;54:9-24. https://doi.org/10.2323/jgam.54.9
  7. Packhaeuser CB, Lahnstein K, Sitterberg J, Schmehl T, Gessler T, Bakowsky U, et al. Stabilization of aerosolizable nano-carriers by freeze-drying. Pharm Res. 2009;26:129-138. https://doi.org/10.1007/s11095-008-9714-0
  8. Picot A, Lacroix C. Encapsulation of bifidobacteria in whey protein-based microcapsules and survival in simulated gastrointestinal conditions and in yoghurt. Int Dairy J. 2004;14:505-515. https://doi.org/10.1016/j.idairyj.2003.10.008
  9. Chacon M, Molpeceres J, Berges L, Guzman M, Aberturas MR. Stability and freeze-drying of cyclosporine loaded poly (D,L lactide-glycolide) carriers. Eur J Pharm Sci. 1999;8:99-107. https://doi.org/10.1016/S0928-0987(98)00066-9
  10. Kang CH, Kim YG, Han SH, Kim JS, Jeong Y, Paek NS. Effect of pumpkin powder as cryoprotectant to improve the viability of freeze dried lactic acid bacteria. Korean Soc Biotechnol Bioeng J. 2017;32:251-255.
  11. Yoo DA, Bagon BB, Valeriano VDV, Oh JK, Kim H, Cho SA, et al. Complete genome analysis of Lactobacillus fermentum SK152 from kimchi reveals genes associated with its antimicrobial activity. FEMS Microbiol Lett. 2017;364:fnx185.
  12. Yeo S, Shin HS, Lee HW, Hong D, Park H, Holzapfel W, et al. Determination of optimized growth medium and cryoprotective additives to enhance the growth and survival of Lactobacillus salivarius. J Microbiol Biotechnol. 2018;28:718-731. https://doi.org/10.4014/jmb.1801.01059
  13. Semyonov D, Ramon O, Kaplun Z, Levin-Brener L, Gurevich N. Shimoni E. Microencapsulation of Lactobacillus paracasei by spray freeze drying. Food Res Int. 2010;43:193-202. https://doi.org/10.1016/j.foodres.2009.09.028
  14. Rathnayaka RMUSK. Effect of freeze-drying on viability and probiotic properties of a mixture of probiotic bacteria. ARPN J Sci Technol. 2013;3:1074-1078.
  15. Saarela M, Virkajarvi I, Alakomi HL, Sigvart-Mattila P, Matto J. Stability and functionality of freeze-dried probiotic Bifidobacterium cells during storage in juice and milk. Int Dairy J. 2006;16:1477-1482. https://doi.org/10.1016/j.idairyj.2005.12.007
  16. Conrad PB, Miller DP, Cielenski PR, de Pablo JJ. Stabilization and preservation of Lactobacillus acidophilus in saccharide matrices. Cryobiology. 2000;41:17-24. https://doi.org/10.1006/cryo.2000.2260
  17. Patist A, Zoerb H. Preservation mechanisms of trehalose in food and biosystems. Colloids Surf B Biointerfaces. 2005;40:107-113. https://doi.org/10.1016/j.colsurfb.2004.05.003
  18. Pyar H, Peh KK. Enteric coating of granules containing the probiotic Lactobacillus acidophilus. Acta Pharm. 2014;64:247-256. https://doi.org/10.2478/acph-2014-0011
  19. Reddy KBPK, Awasthi SP, Madhu AN, Prapulla SG. Role of cryoprotectants on the viability and functional properties of probiotic lactic acid bacteria during freeze drying. Food Biotechnol. 2009;23:243-265. https://doi.org/10.1080/08905430903106811
  20. Zayed G, Roos YH. Influence of trehalose and moisture content on survival of Lactobacillus salivarius subjected to freeze-drying and Storage. Process Biochem. 2004;39:1081-1086. https://doi.org/10.1016/S0032-9592(03)00222-X
  21. Jofre A, Aymerich T, Garriga M. Impact of different cryoprotectants on the survival of freeze-dried Lactobacillus rhamnosus and Lactobacillus casei/paracasei during long-term storage. Benef Microbes. 2015;6:381-386. https://doi.org/10.3920/BM2014.0038
  22. Miao S, Mills S, Stanton C, Fitzgerald GF, Roos Y, Ross RP. Effect of disaccharides on survival during storage of freeze dried probiotics. Dairy Sci Technol. 2008;88:19-30. https://doi.org/10.1051/dst:2007003
  23. Castro HP, Teixeira PM, Kirby R. Evidence of membrane damage in Lactobacillus bulgaricus following freeze drying. J Appl Microbiol. 1997;82:87-94. https://doi.org/10.1111/j.1365-2672.1997.tb03301.x
  24. Thammavongs B, Corroler D, Panoff JM, Auffray Y, Boutibonnes P. Physiological response of Enterococcus faecalis JH2-2 to cold shock: growth at low temperatures and freezing/thawing challenge. Lett Appl Microbiol. 1996;23:398-402. https://doi.org/10.1111/j.1472-765X.1996.tb01345.x
  25. Coulibaly I, Dubois-Dauphin R, Destain J, Fauconnier ML, Lognay G, Thonart P. The resistance to freeze-drying and to storage was determined as the cellular ability to recover its survival rate and acidification activity. Int J Microbiol. 2010;625239.
  26. Zhao G, Zhang G. Effect of protective agents, freezing temperature, rehydration media on viability of malolactic bacteria subjected to freeze-drying. J Appl Microbiol. 2005;99:333-338. https://doi.org/10.1111/j.1365-2672.2005.02587.x

Cited by

  1. Immunomodulatory potential of four candidate probiotic Lactobacillus strains from plant and animal origin using comparative genomic analysis vol.3, pp.12, 2019, https://doi.org/10.1099/acmi.0.000299