DOI QR코드

DOI QR Code

Prediction of Sleep Stages and Estimation of Sleep Cycle Using Accelerometer Sensor Data

가속도 센서 데이터 기반 수면단계 예측 및 수면주기의 추정

  • Gang, Gyeong Woo (Fusion Data, Inc.) ;
  • Kim, Tae Seon (School of Information, Communications & Electronics Engineering, The Catholic Univ. Korea)
  • Received : 2018.12.09
  • Accepted : 2019.12.26
  • Published : 2019.12.31

Abstract

Though sleep polysomnography (PSG) is considered as a golden rule for medical diagnosis of sleep disorder, it is essential to find alternative diagnosis methods due to its cost and time constraints. Recently, as the popularity of wearable health devices, there are many research trials to replace conventional actigraphy to consumer grade devices. However, these devices are very limited in their use due to the accessibility of the data and algorithms. In this paper, we showed the predictive model for sleep stages classified by American Academy of Sleep Medicine (AASM) standard and we proposed the estimation of sleep cycle by comparing sensor data and power spectrums of δ wave and θ wave. The sleep stage prediction for 31 subjects showed an accuracy of 85.26%. Also, we showed the possibility that proposed algorithm can find the sleep cycle of REM sleep and NREM sleep.

수면 질환에 사용되는 수면다원검사는 그 비용 및 시간적 제약으로 새로운 대안을 찾을 필요가 절실하다. 최근 웨어러블 헬스기기가 대중화 되면서 기존의 액티그래피를 이용한 수면분석을 대신하려는 다양한 연구가 되고 있으나 이들 기기의 데이터 및 알고리즘은 접근성 및 성능에 있어 매우 제한적인 상황이다 본 논문에서는 자체 제작된 가속도계 센서모듈을 이용한 수면 중 움직임 정보를 이용하여 AASM표준 방식 기준으로 분류된 수면 단계를 예측하고, 센서의 움직임 정보와 뇌파의 δ파와 θ파의 파워스펙트럼 비교를 통해 수면의 주기를 추정할 수 있는 방법을 제시했다. 31명의 공개된 PSG 분석결과를 이용한 수면 단계 예측 결과 85.26%의 정확도를 보였다. 움직임 신호의 특성과 δ파와 θ파의 파워 변화를 비교한 결과 REM수면과 NREM수면의 반복 주기를 제시한 알고리즘으로 찾을 수 있는 가능성이 있음을 보였다.

Keywords

References

  1. National Health Insurance Service, "Tired sle ep disorder even after sleeping," https://www.nhis.or.kr/bbs7/boards/B0039/31445
  2. A. Roebuck, V. Monasterio, E. Gederi, M. Osipov, J. Behar, A. Malhotra, T. Penzel, and G. D. Clifford, "A review of signals used in sleep analysis," Physiol. Meas., vol.35, no.1, pp.R1-R57, 2014. DOI: 10.1088/0967-3334/35/1/R1
  3. S. Roomkham, D. Lovell, J. Cheung and D. Perrin, "Promises and Challenges in the Use of Consumer-Grade Devices for Sleep Monitoring," IEEE Rev. Biomed. Eng., vol.11, pp.53-67, 2018. DOI: 10.1109/RBME.2018.2811735
  4. J. Newell, O. Mairesse, P. Verbanck, and D. Neu, "Is a one-night stay in the lab really enough to conclude? First-night effect and night-to-night variability in polysomnographic recordings among different clinical population samples," Psychiatry Res., vol.200, no.2, pp.795.801, 2012. DOI: 10.1016/j.psychres.2012.07.045
  5. A. Sadeh and C. Acebo, "The role of actigraphy in sleep medicine," Sleep Med. Rev., vol.6, no.2, pp.113-124, 2002. DOI: 10.1053/smrv.2001.0182
  6. E. M. Cespedes et al., "Comparison of selfeported sleep duration with actigraphy:Results from the Hispanic Community Health Study/Study of Latinos Sueno Ancillary Study," Amer. J. Epidemiol., vol.183, no.6, pp.561.573, 2016. DOI: 10.1093/aje/kwv251
  7. J. Cheung, J. M. Zeitzer, H. Lu and E. Mignot, "Validation of minute-to-minute scoring for sleep and wake periods in a consumer wearable device compared to an actigraphy device," Sleep Sci. and Prac., vol.2, no.11, 2018. DOI: 10.1186/s41606-018-0029-8
  8. J. Cook., M. Prairie and D. Plante, "Utility of the Fitbit Flex to evaluate sleep in major depressive disorder: A comparison against polysomnography and wrist-worn actigraphy," J. Affect. Disord., vol.217, 2017. DOI: 10.1016/j.jad.2017.04.030
  9. M. de Zambotti, J. G. Godino, F. C. Baker, J. Cheung, K. Patrick, and I. M. Colrain, "The boom in wearable technology:Cause for alarm or just what is needed to better understand sleep?" Sleep, vol.39, no.9, pp.1761.1762, 2016. DOI: 10.5665/sleep.6108
  10. M. Boulos, A. Brewer, C. Karimkhani, D. Buller, and R. Dellavalle, "Mobile medical and health apps: State of the art, concerns, regulatory control and certification," Online J. Public Health Informat., vol.5, no.3, p.229, 2014. DOI: 10.5210/ojphi.v5i3.4814
  11. O. Walch, "Motion and heart rate from a wrist-worn wearable and labeled sleep from polysomnography," PhysioNet, 2019. DOI: 10.13026/hmhs-py35
  12. S. Hamida, B. Ahmed, D. Cvetkovic, E. Jovanov, G. Kennedy, T. Penzel, "A New Era in Sleep Monitoring: The Application of Mobile Technologies in Insomnia Diagnosis," Mobile Health, vol.5,. pp.101-127, 2015. DOI: 10.1007/978-3-319-12817-7_5
  13. S. Fallmann and L. Chen, "Computational Sleep Behavior Analysis:A Survey," IEEE Access, vol.7, pp.142421-142440, 2019. DOI: 10.1109/ACCESS.2019.2944801