DOI QR코드

DOI QR Code

A Study on Energy Saving Monitoring System of Data Center based on Context Awareness

상황인지 기반 데이터센터의 전력절감 모니터링 시스템에 관한 연구

  • Lee, Hwa-Jeong (Department of Computer Science & Engineering, GNTECH) ;
  • Jung, Min-Yong (Department of Computer Science & Engineering, GNTECH) ;
  • Kim, Chang-Geun (Department of Computer Science & Engineering, GNTECH) ;
  • Kim, Hyun-Ju (Department of Computer Science & Engineering, GNTECH)
  • 이화정 (경남과학기술대학교 컴퓨터공학과) ;
  • 정민영 (경남과학기술대학교 컴퓨터공학과) ;
  • 김창근 (경남과학기술대학교 컴퓨터공학과) ;
  • 김현주 (경남과학기술대학교 컴퓨터공학과)
  • Received : 2018.10.30
  • Accepted : 2019.01.20
  • Published : 2019.01.28

Abstract

In recent years, with the advancement of IT technology, we expect data size of the world to increase 10 times in 2025. The rapid development of this Internet technology leads to the downsizing of the server system of the data center which manages and operates the data, the capacity of the storage medium, and the power consumption of the data center. In this paper, we propose an energy conservation policy and analyze it in real time by analyzing the power consumption pattern of the server system of the data center. The proposed system can monitor and analyze the power consumption pattern of the individual server system in the data center, and it can be expected that about 10% of the total power consumption of the data center will be saved by efficiently managing the actual operation time of the server system.

최근 IT기술의 발전에 따라 2025년 전 세계의 데이터 규모가 현재보다 10배 정도 증가할 것으로 예상한다. 이러한 인터넷 기술의 급속한 발전은 데이터센터 내에서 서버시스템의 고사양화와 저장매체의 대용량화 등을 초래하며, 이는 데이터센터의 전력 소비를 증가시키는 원인이 되고 있다. 이에 본 논문에서는 데이터센터의 서버시스템에 대한 전력 소모패턴을 분석하여 에너지 절전정책을 추천하고 이를 실시간으로 모니터링하는 시스템을 제안한다. 제안한 시스템은 데이터센터의 개별 서버시스템에 대한 전력 소모패턴을 모니터링하고 분석할 수 있으며, 서버시스템의 실제 동작 시간을 효율적으로 관리하여 데이터센터의 전체 전력소모량 대비 10% 내외 정도가 절감될 것으로 기대한다.

Keywords

JKOHBZ_2019_v9n1_19_f0001.png 이미지

Fig. 1. CPU usage by time of day

JKOHBZ_2019_v9n1_19_f0002.png 이미지

Fig. 2. operation flowchart of ESMS

JKOHBZ_2019_v9n1_19_f0003.png 이미지

Fig. 3. Flow chart of power reduction policy recommendation

JKOHBZ_2019_v9n1_19_f0004.png 이미지

Fig. 4. Types for power saving patterns

JKOHBZ_2019_v9n1_19_f0005.png 이미지

Fig. 5. Flow Chart for Power Saving Monitoring

JKOHBZ_2019_v9n1_19_f0006.png 이미지

Fig. 6. Structure of ESMS

JKOHBZ_2019_v9n1_19_f0007.png 이미지

Fig. 7. First Interface of ESMS

JKOHBZ_2019_v9n1_19_f0008.png 이미지

Fig. 8. Information gathering Interface for power consumption pattern

JKOHBZ_2019_v9n1_19_f0009.png 이미지

Fig. 9. Analysis Interface for power consumption pattern

JKOHBZ_2019_v9n1_19_f0010.png 이미지

Fig. 10. Interface for creating recommendation policy for power saving.

Table 1. Comparison by Item

JKOHBZ_2019_v9n1_19_t0001.png 이미지

Table 2. Comparison of power consumption

JKOHBZ_2019_v9n1_19_t0002.png 이미지

References

  1. J. Y. Oh, D. Y. Y. Yun E. S. Jung, Y. T. Lee & K. G. Chung. (2015). Virtualization based server-client model for reducing power consumption. Korea Information Science Society, 1170-1172.
  2. Y. Zhan. (2012). Virtualization and cloud computing, Lecture Notes in Electrical Engineerin,. 143.
  3. B. J. Jun, D. B. Yun & S. S. Shin. (2017). Improved integrated monitoring system design and construction, Convergence Society for SMB, 7(1), 25-33. https://doi.org/10.22156/CS4SMB.2017.7.2.025
  4. H. K. Kim. (2010). Present and future of context aware computing. Veta research & Consulting VETA Report.
  5. H. J. Lee. J. S. Han, Y. K. Jung, I. U. Lee & S. H. Lee. (2012). A technology of context-aware based building management for energy efficiency, Convergence Society for SMB, 2(1), 69-75.
  6. B. C. Jung & W. S. Na. (2016). A study on the smart fire detection system using the wireless communication, Convergence Society for SMB, 6(3), 37-41.
  7. H. J. Lee, M. Y. Jung, G. S. Lee & H. Y. Kim. (2018). A study on energy conservation system of university of computing center based on machine learning. Proceedings conference on knowledge information technology and system, 12(1).
  8. H. J. Lee, M. Y. Jung, G. S. Lee & H. Y. Kim. (2017). A study of efficient power management for intelligent data center system, Proceedings conference on knowledge information technology and system, 11(2).
  9. M. Y. Jung, H. J. Lee, G. S. Lee & H. Y. Kim. (2017). A study on energy conservation system of integrated computing center based on context awareness, Proceedings conference on knowledge information technology and system, 11(1).
  10. H. J. Lee, M. Y. Jung, C. G. Kim & H. Y. Kim. (2018). A study on monitoring tool of web server system for effective power management policy of data center, Proceedings conference on knowledge information.
  11. Weichao Ma & S. H. Lee. (2014). Modelling and development of control algorithm of endoscopy, Convergence Society for SMB, 4(2), 33-39.
  12. W. S. Na. (2017). A study on the development of educational software for web-based visual effects interactive environments, Convergence Society for SMB, 7(5), 89-93. https://doi.org/10.22156/CS4SMB.2017.7.5.089
  13. https://www.lenovo.com/kr/ko/data-center/systems-management/xclarity-energy-manager/
  14. https://www.rohde-schwarz.com/kr/products/test-and-measurement/overview/test-measurement-overview_229579.html
  15. https://search.cisco.com/search?query=Catalyst%204500-X%20Series%20Switches:%20Product%20Overview:%20Cisco%20Energy%20Wise&locale=enUS&bizcontext=&cat=QUESTIONS&mode=text&clktyp=click&autosuggest=true
  16. Y. S. Sim, J. W. Jung & I. C. Choi. (2005). A computational comparison of cluster validity indices for K-measns algorithm, Proceedings conference on KIIE, 27.
  17. Y. H. Lee & H. S. Kim. (2014). A study on computer center maintenance savings through NT server consolidate virtualization, J ournal of the Korea Society of Computer and Information, 19(2) , 11-19. https://doi.org/10.9708/jksci.2014.19.2.011
  18. https://01.org/blogs/2014/running-average-powerlimit-%E2%80%93-rapl