참고문헌
- Ahn JH, Shin SG, Hwang S. Effect of microwave irradiation on the disintegration and acidogenesis of municipal secondary sludge. Chem. Eng. J. 2009;153:145-150 https://doi.org/10.1016/j.cej.2009.06.032
- Carrere H, Dumas C, Battimelli A, et al. Pretreatment methods to improve sludge anaerobic degradability: A review. J. Hazard. Mater. 2010;183:1-15 https://doi.org/10.1016/j.jhazmat.2010.06.129
- Siegart I, Banks C. The effect of volatile fatty acid additions on the anaerobic digestion of cellulose and glucose in batch reactors. Process Biochem. 2005;40:3412-3418. https://doi.org/10.1016/j.procbio.2005.01.025
- Bourgrier C, Albasi C, Delgenes JP, Carrere H. Effect of ultrasonic, thermal and ozone pre-treatments on waste activated sludge solubilisation and anaerobic biodegradability. Chem. Eng. Proc. 2006;45:711-718. https://doi.org/10.1016/j.cep.2006.02.005
- Jain S, Jain S, Wolf IT, Lee J, Tong YW. A comprehensive review on operating parameters and different pretreatment methodologies for anaerobic digestion of municipal solid waste. Renew. Sust. Energ. Rev. 2015;52:142-154. https://doi.org/10.1016/j.rser.2015.07.091
- Zhen G, Lu X, Kato H, Zhao Y, Li YY. Overview of pretreatment strategies for enhancing sewage sludge disintegration and subsequent anaerobic digestion: Current advances, full-scale application and future perspectives. Renew. Sust. Energ. Rev. 2017;69:559-577 https://doi.org/10.1016/j.rser.2016.11.187
- Esposito G, Frunzo L, Giordano A, Liotta F, Panico A, Pirozzi F. Anaerobic co-digestion of organic wastes. Rev. Environ. Sci. Bio/Technol. 2012;11:325-341. https://doi.org/10.1007/s11157-012-9277-8
- Saha M, Eskicioglu C, Marin J. Microwave, ultrasonic and chemo-mechanical pretreatments for enhancing methane potential of pulp mill wastewater treatment sludge. Bioresour. Technol. 2011;102:7815-7826. https://doi.org/10.1016/j.biortech.2011.06.053
- Kim J, Park C, Kim T-H, et al. Effects of various pretreatments for enhanced anaerobic digestion with waste activated sludge. J. Biosci. Bioeng. 2003;95:271-275. https://doi.org/10.1016/S1389-1723(03)80028-2
- Eskicioglu C, Kennedy KJ, Droste RL. Characterization of soluble organic matter of waste activated sludge before and after thermal pretreament. Water Res. 2006;40:3725-3736. https://doi.org/10.1016/j.watres.2006.08.017
- Eskicioglu C, Terzian N, Kennedy KJ, Droste RL, Hamoda M. A thermal microwave effects for enhancing digestibility of waste activated sludge. Water Res. 2007;41:2457-2466. https://doi.org/10.1016/j.watres.2007.03.008
- Guo L, Li X-M, Bo X, et al. Impacts of sterilization, microwave and ultrasonication pretreatment on hydrogen producing using waste sludge. Bioresour. Technol. 2008;99:3651-3658. https://doi.org/10.1016/j.biortech.2007.07.026
- Yu GH, He PJ, Shao LM, Zhu YS. Extracellular proteins, polysaccharides and enzymes impact on sludge aerobic digestion after ultrasonic pretreatment. Water Res. 2008;42:1925-1934. https://doi.org/10.1016/j.watres.2007.11.022
- Wang J, Wan W. Comparison of different pretreatment methods for enriching hydrogen-producing bacteria from digested sludge. Int. J. Hydrog. Energ. 2008;33:2934-2941. https://doi.org/10.1016/j.ijhydene.2008.03.048
- Chu CP, Chang BV, Liao GS, Jean DS, Lee DJ. Observations on changes in ultrasonically treated waste-activated sludge. Water Res. 2001;35:1038-1046. https://doi.org/10.1016/S0043-1354(00)00338-9
- Pilli S, Bhunia P, Yan S, LeBlanc RJ, Tyagi RD, Surampalli RY. Ultrasonic pretreatment of sludge: A review. Ultrason. Sonochem. 2011;18:1-18. https://doi.org/10.1016/j.ultsonch.2010.02.014
- Borges ESM, Chernicharo CAL. Effect of thermal treatment of anaerobic sludge on the bioavailability and biodegradability characteristics of the organic fraction. Braz. J. Chem. Eng. 2009;26:469-480. https://doi.org/10.1590/S0104-66322009000300003
- Haider MR, Yousaf S, Malik RN, Visvanathan C. Effect of mixing ratio of food waste and rice husk co-digestion and substrate to inoculum ratio on biogas production. Bioresour. Technol. 2015;190:451-457. https://doi.org/10.1016/j.biortech.2015.02.105
- Marin J, Kennedy KJ, Eskicioglu C. Effect of microwave irradiation on anaerobic degradability of model kitchen waste. Waste Manage. 2010;30:1772-1779. https://doi.org/10.1016/j.wasman.2010.01.033
- Shahriari H, Warith M, Hamoda M, Kennedy K. Evaluation of single vs. staged mesophilic anaerobic digestion of kitchen waste with and without microwave pretreatment. J. Environ. Manage. 2013;125:74-84. https://doi.org/10.1016/j.jenvman.2013.03.042
- Zhang J, Lv C, Tong J, et al. Optimization and microbial community analysis of anaerobic co-digestion of food waste and sewage sludge based on microwave pretreatment. Bioresour. Technol. 2016;200;253-261. https://doi.org/10.1016/j.biortech.2015.10.037
- Zhang W, Zhang L, Li A. Anaerobic co-digestion of food waste with MSW incineration plant fresh leachate: Process performance and synergistic effects. Chem. Eng. J. 2015;259:795-805. https://doi.org/10.1016/j.cej.2014.08.039
- Rao PV, Baral SS. Experimental design of mixture for the anaerobic co-digestion of sewage sludge. Chem. Eng. J. 2011;172:977-986. https://doi.org/10.1016/j.cej.2011.07.010
- Tewelde S, Eyalarasan K, Radhamani R, Kathikeyan K. Biogas production from co-digestion of brewery waste and cattle dung. Int. J. Latest Trends Agr. Food Sci. 2012;2:90-93.
- Murto M, Bjornsson L, Mattiasson B. Impact of food industrial waste on anaerobic co-digestion of sewage sludge and pig manure. J. Environ. Manage. 2004;70:101-107. https://doi.org/10.1016/j.jenvman.2003.11.001
- Ward AJ, Hobbs PJ, Holliman PJ, Jones DL. Optimisation of the anaerobic digestion of agricultural resources. Bioresour. Technol. 2008;99:7928-7940. https://doi.org/10.1016/j.biortech.2008.02.044
- Braguglia CM, Gallipoli A, Gianico A, Pagliaccia P. Anaerobic bioconversion of food waste into energy: A critical review. Bioresour. Technol. 2018;248(Pt A):37-56. https://doi.org/10.1016/j.biortech.2017.06.145
- Mahanty B, Zafar M, Han MJ, Park H-S. Optimization of co-digestion of various industrial sludges for biogas production and sludge treatment: Methane production potential experiments and modeling. Waste Manage. 2014;34:1018-1024. https://doi.org/10.1016/j.wasman.2013.09.001
- Wang X, Yang G, Li F, Feng Y, Ren G, Han X. Evaluation of two statistical methods for optimizing the feeding composition in anaerobic co-digestion: Mixture design and central composition design. Bioresour. Technol. 2013;131:172-178. https://doi.org/10.1016/j.biortech.2012.12.174
- Liu C, Li H, Zhang Y, Liu C. Improve biogas production from low-organic-content sludge through high-solids anaerobic co-digestion with food waste. Bioresour. Technol. 2016;219:252-260. https://doi.org/10.1016/j.biortech.2016.07.130
- Owen WF, Stuckey DC, Healy JB, Young LY McCarty PL. Bioassay for monitoring biochemical methane potential and anaerobic toxicity. Water Res. 1979;13:485-492. https://doi.org/10.1016/0043-1354(79)90043-5
- APHA, AWWA, WEF. Standard methods for the examination of water and wastewater. 22nd ed. Washington D.C.: American Public Health Association, American Water Works Association, Water Environment Federation; 1998.
- Barker HA, Buswell AM. Biological formation of methane. J. Ind. Eng. Chem. 1956;48:1438-1443. https://doi.org/10.1021/ie51400a023
- Park SH. Study of sludge pretreatment using microwave irradiation and ultrasonic. [dissertation]. Pusan: Dong-A Univ.; 2005.
- Callaghan FJ, Wase DAJ, Thayanithy K, Forster CF. Continuous co-digestion of cattle slurry with fruit and vegetable wastes and chicken manure. Biomass Bioenerg. 2002;22:71-77. https://doi.org/10.1016/S0961-9534(01)00057-5
- Ma C, Liu J, Ye M, Zou L, Qian G, Li Y-Y. Towards utmost bioenergy conversion efficiency of food waste: Pretreatment, co-digestion, and reactor type. Renew. Sust. Energ. Rev. 2018;90:700-709. https://doi.org/10.1016/j.rser.2018.03.110
피인용 문헌
- Improvement of Waste Dehydrated Sludge for Anaerobic Digestion through High-Temperature and High-Pressure Solubilization vol.13, pp.1, 2019, https://doi.org/10.3390/en13010088
- Enhancement of Methane Production from Vegetable, Fruit and Flower Market Wastes Using Extrusion as Pretreatment and Kinetic Modeling vol.231, pp.3, 2019, https://doi.org/10.1007/s11270-020-04469-2
- Wastes to be the source of nutrients and energy to mitigate climate change and ensure future sustainability: options and strategies vol.43, pp.6, 2019, https://doi.org/10.1080/01904167.2020.1711944
- Analysis of Using Biogas Resources for Electric Vehicle Charging in Bangladesh: A Techno-Economic-Environmental Perspective vol.12, pp.7, 2019, https://doi.org/10.3390/su12072579
- A new upgrading platform for livestock lignocellulosic waste into syngas using CO2-assisted thermo-chemical process vol.236, 2019, https://doi.org/10.1016/j.enconman.2021.114084
- Simultaneously upgrading biogas and treating digestate using bioelectrochemical anaerobic trickling filter bed reactor vol.46, 2019, https://doi.org/10.1016/j.seta.2021.101218
- Simulation and Optimization of Anaerobic Co-Digestion of Food Waste with Palm Oil Mill Effluent for Biogas Production vol.13, pp.24, 2021, https://doi.org/10.3390/su132413665
- Overview of pretreatment technologies on vegetable, fruit and flower market wastes disintegration and bioenergy potential: Indian scenario vol.288, pp.p3, 2022, https://doi.org/10.1016/j.chemosphere.2021.132604