DOI QR코드

DOI QR Code

Effects of ultrasonic and microbubble treatment on serum components and innate immunity in rainbow trout (Oncorhynchus mykiss)

초음파와 microbubble 처리가 무지개송어(Oncorhynchus mykiss)의 혈청성분 및 선천성 면역에 미치는 영향

  • Kim, Jin-Young (Department of Aquatic Life Medical Sciences, Sunmoon University) ;
  • Park, Jong-Bin (Department of Aquatic Life Medical Sciences, Sunmoon University) ;
  • Park, Jeong Su (Department of Aquatic Life Medical Sciences, Sunmoon University) ;
  • Kim, Woo-Seoung (Department of Environmental and Bio-Chemical Engineering, Sunmoon University) ;
  • Kim, Hak Soo (Department of Environmental and Bio-Chemical Engineering, Sunmoon University) ;
  • Kwon, Se Ryun (Department of Aquatic Life Medical Sciences, Sunmoon University)
  • 김진영 (선문대학교 수산생명의학과) ;
  • 박종빈 (선문대학교 수산생명의학과) ;
  • 박정수 (선문대학교 수산생명의학과) ;
  • 김우성 (선문대학교 환경생명화학공학과) ;
  • 김학수 (선문대학교 환경생명화학공학과) ;
  • 권세련 (선문대학교 수산생명의학과)
  • Received : 2019.10.31
  • Accepted : 2019.12.11
  • Published : 2019.12.31

Abstract

Rainbow trout (Oncorhynchus mykiss) were treated with ultrasonic (40kHz) and microbubble. The organic serum components, glucose were decreased compared to control at microbubble single treatment (M) and ultrasonic treatment (UL), but glucose concentrations in fish serum of all experimental groups analyzed in this study were also within the normal range. The organic serum components, cholesterol and total protein were no significant change by ultrasonic and microbubble treatment. There were no significant changes in the lysozyme activity on ultrasonic and microbubble treatment. Serum bactericidal activity decreased on ultrasonic single treatment (UL) compared to the control (P<0.05), but the numbers of bacterial colonies were significantly lower than those in the negative (PBS). The results of this study indicate that ultrasonic and microbubble treatment did not have a critical effect on the serum composition and innate immunity of O. mykiss, and that it is a way to do not significant stress on the fish body as a countermeasure against sea lice.

Keywords

References

  1. Arriagada, G., Sanchez, J., Stryhn, H., Vanderstichel, R., Campisto, J. L., Ibarra, R. and St-Hilaire, S.: A multivariable assessment of the spatio-temporal distribution of pyrethroids performance on the sea lice Caligus rogercresseyi in Chile. Spat. Spatiotemporal pidemiol., 26:1-13, 2018. https://doi.org/10.1016/j.sste.2018.04.004
  2. Barker, S. E., Bricknell, I, R., Covello, J., Purcell, S., Fast, M. D., Wolters, W. and Bouchard, D. A.: Sea lice, Lepeophtheirus salmonis (Kroyer 1837), infected Atlantic salmon (Salmo salar L.) are more susceptible to infectios salmon anemia virus. PLoS One., 14:e0209178, 2019. https://doi.org/10.1371/journal.pone.0209178
  3. Biller-Takahashi, J. D., Takahashi, L. S., Pilarski, F., Sebastiao, F. A. and Urbinati, E. C.: Serum bactericidal activity as indicator of innate immunity in pacu Piaractus mesopotamicus (Holmberg, 1887). Arq. Bras. Med. Vet. Zootec., 65:1745-1751, 2013. https://doi.org/10.1590/S0102-09352013000600023
  4. Bravo. S., Nunez, M. and Silva, M. T.: Efficacy of the treatments used for the control of Caligus rogercresseyi infecting Atlantic salmon, Salmo salar L., in a new fish-farming location in Region XI, Chile. J. Fish. Dis., 36:221-228, 2013. https://doi.org/10.1111/jfd.12023
  5. Cakici, H. and Aydin, S.: Changes in Blood Parameters of Rainbow trout (Oncorhynchus mykiss Walbaum) after Physical Pollution. J Appl. Anim. Res., 29:77-80, 2006. https://doi.org/10.1080/09712119.2006.9706576
  6. Carcamo, J. G., Aguilar, M. N., Barrientos, C. A., Carreno, C. F., Quezada, C. A., Bustos, C., Manriquez, R. A., Avendano-Herrera, R and Yanez, A. J.: Effect of emamectin benzoate on transcriptional expression of cytochromes P450 and the multidrug transporters (Pgp and MRP1) in rainbow trout (Oncorhynchus mykiss) and the sea lice Caligus rogercresseyi. Aquaculture., 321:207-215, 2011. https://doi.org/10.1016/j.aquaculture.2011.09.012
  7. Dessen, J. E., Morkore, T., Bildoy, J. I., Johnsen, S. N., Poppe, L. T., Hatlen, B., Thomassen, M. S. and Rorvik, K. A.: Increased dietary protein-to-lipid ratio improves survival during naturally occurring pancreas disease in Atlantic salmon, Salmo salar L. J. Fish. Dis., 42:21-34, 2019. https://doi.org/10.1111/jfd.12904
  8. Fields, D. M., Skiftesvik, A. B. and Browman, H. I.: Behavioural responses of infective-stage copepodids of the salmon louse (Lepeophtheirus salmonis, Copepoda: Caligidae) to host-related sensory cues. J. Fish. Dis., 41:875-884, 2018. https://doi.org/10.1111/jfd.12690
  9. Frenkel, V., Kimmel, E. and Iger, Y.: Ultrasound-induced cavitation damage to external epithelia of fish skin. Ultrasound. Med. Biol., 25:1295-1303, 1999. https://doi.org/10.1016/S0301-5629(99)00069-1
  10. Frenkel, V., Kimmel, E. and Iger, Y.: Ultrasound-induced intercellular space widening in fish epidermis. Ultrasound. Med. Biol., 26:473-480, 2000. https://doi.org/10.1016/S0301-5629(99)00164-7
  11. Good, C., Davidson, J., Welsh, C., Snekvik, K. and Summerfelt, S.: The effects of ozonation on performance, health and welfare of rainbow trout Oncorhynchus mykiss in low-exchange water recirculation aquaculture systems. Aquacultural Eng., 44:97-102, 2011. https://doi.org/10.1016/j.aquaeng.2011.04.003
  12. Jeon, J. K., Kim, P. K., Park, Y. J., Myoung, J. G. and Kim, J. M.: Stress responses of coho salmon, Oncorhynchus kisutch, to transport in fresh water or salt water. J. Korean. Fish. Soc., 32(2):119-123, 2000.
  13. Jung, J. O. and Jung, Y. J.: Industrial Wastewater Treatment Containing High Concentration of Ammonia with Low Energy Micro-Bubble Reactor. J. Wetland. Res., 18:286-291, 2016. https://doi.org/10.17663/JWR.2016.18.3.286
  14. Kim, J. H. and Kang, J. C.: The chromium accumulation and its physiological effects in juvenile rockfish, Sebastes schlegelii, exposed to different levels of dietary chromium ($Cr^{6+}$) concentrations. Environ. Toxicol. Pharmacol., 41:152-158, 2016. https://doi.org/10.1016/j.etap.2015.12.001
  15. Kim, J. H., Kim, K. W., Bae, S. H., Kim, S. K., Kim, S. K. and Kim, J. H.: Alterations in Hematological Parameters and Antioxidant Responses in the Bioflocreared Flatfish Paralichthys olivaceus Following Ammonia Exposure. Korean. J. Fish. Aquat. Sci., 50(6):750-755, 2017. https://doi.org/10.5657/KFAS.2017.0750
  16. Kim, K. H., Hong, S. W., Moon, H. N. and Yeo, I. K.: Physiological Responses of the Chicken Grunt Parapristipoma trilineatum to High Water Temperature Stress. Korean. J. Fish. Aquat. Sci., 51(6):714-719, 2018. https://doi.org/10.5657/KFAS.2018.0714
  17. Kortan, J., Blahova, J., Kruzikova, K. and Adamek, Z.: Stress reaponses of carp pond fish stock upon hunting activities of the great cormorant (Phalacrocorax carbo sinensis L.). Aquacultures Res., 42:322-330, 2011. https://doi.org/10.1111/j.1365-2109.2010.02624.x
  18. Krasovitski, B., Frenkel, V., Shoham, S. and Kimmel, E.: Intramembrane cavitation as a unifying mechanism of ultrasound-induced bioeffects. PNAS., 108:3258-3263, 2011. https://doi.org/10.1073/pnas.1015771108
  19. Kubilay, A. and Ulukoy, G.: The Effects of Acute Stress on Rainbow Trout (Oncorhynchus mykiss). Tur. J. Zool., 26:249-254, 2002.
  20. Kwon, T. K., Yu, M., Kim, K. T. and Jin, B. D.: Evaluation of Physiological Response during Full-bath using Micro Bubble. Proc. Kor. Soc. Prec. Eng. Conf., 901-902, 2012.
  21. Maruvada, S. and Hynynen, K.: Optical monitoring of ultrasound-induced bioeffects in glass catfish. Ultrasound. Med. Biol., 30:67-74, 2004. https://doi.org/10.1016/j.ultrasmedbio.2003.08.005
  22. Ming, J., Xie, J., Xu, P., Ge, X., Liu, W. and Ye, J.: Effects of emodin and vitamin C on growth performance, biochemical parameters and two HSP70s mRNA expression of Wuchang bream (Megalobrama amblycephala Yih) under high temperature stress. Fish. Shellfish. Immunol., 32:651-661, 2012. https://doi.org/10.1016/j.fsi.2012.01.008
  23. Montory, J. A., Cumillaf, J. P., Cubillos, V. M., Paschke, K., Uribina, M. A. and Gebauer, P.: Early development of the ectoparasite Caligus rogercresseyi under combined salinity and temperature gradients. Aquaculture., 486:68-74, 2018. https://doi.org/10.1016/j.aquaculture.2017.12.017
  24. Orun, I., Talas, Z. S., Gulhan, M. F. and Erdogan, K.: Role of propolis on biochemical and hematological parameters of Oncorhynchus mykiss exposed to cypermethrin. J. Survey Fis. Sci., 1(1):21-35, 2014. https://doi.org/10.18331/SFS2014.1.1.3
  25. Schack, H. B., Malte, H. and Madsen, P. T.: The responses of Atlantic cod (Gadus morhua L.) to ultrasound-emitting predators: stress, behavioural changes or debilitation?. J. Exp. Biol., 211:2079-2096, 2008. https://doi.org/10.1242/jeb.015081
  26. Shchukin, D. G., Skorb, E., Belova, V. and Mohwald, H.: Ultrasonic Cavitation at Solid Surfaces. Advanced Materials., 23:1922-1934, 2011. https://doi.org/10.1002/adma.201004494
  27. Skjelvareid, M. H., Breiland, M. S. W. and Mortensen, A.: Ultrasound as potential inhibitor of salmon louse infestation-A small-scale study. Aquaculture Res., 49:2684-2692, 2018. https://doi.org/10.1111/are.13729
  28. Solvang, T. and Hagemann, A.: A machine vision system for zooplankton behavioural studies: a case study on the phototactic behaviour of sea lice (Lepeophtheirus salmonis) during sound and ultrasound stimuli. J. Exp. Biol., 221:jeb183277, 2018. https://doi.org/10.1242/jeb.183277
  29. Svendsen, E., Dahle, S. W., Hagemann, A., Birkevold, J., Delacroix, S. and Andersen, A. B.: Effect of ultrasonic cavitation on small and large organism for water disinfection during fish transport. Aquaculture Res., 49:1166-1175, 2018. https://doi.org/10.1111/are.13567
  30. Talas, Z. S. and Gulhan, M. F.: Effects of various propolis concentrations on biochemical and hematological parameters of rainbow trout (Oncorhynchus mykiss). Ecotoxicol. Environ. Saf., 72:1994-1998, 2009. https://doi.org/10.1016/j.ecoenv.2009.04.011
  31. Trenzado, C. E., Morales, A. E. and Higuera, M.: Physiological effects of crowding in rainbow trout, Oncorhynchus mykiss, selected for low and high stress responsiveness. Aquaculture., 258:583-593, 2006. https://doi.org/10.1016/j.aquaculture.2006.03.045
  32. Wang, E., Chen, X., Wang, K., Wang, J., Chen, D., Geng, Y., Lai, W. and Wei, X.: Plant polysaccharides used as immunostimulants enhance innate immune response and disease resistance against Aeromonas hydrophila infection in fish. Fish. Shellfish. Immunol., 59:196-202, 2016. https://doi.org/10.1016/j.fsi.2016.10.039
  33. Whyte, S. K., Westcott, J. D., Jimenez, D., Revie, C. W. and Larry Hammell, K.: Assessment of sea lice (Lepeophtheirus salmonis) management in New Brunswick, Canada using deltamethrin (AlphaMax(R)) through clinical field treatment and laboratory bioassay responses. Aquaculture., 422-423:54-62, 2014. https://doi.org/10.1016/j.aquaculture.2013.11.027
  34. Wozny, M., Brzuzan, P., Gusiatin, M., Jakimiuk, E., Dobosz, S. and Kuzminski, H.: Influence of zearalenone on selected biochemical paramenters in juvenile rainbow trout (Oncorhynchus mykiss). Pol. J. Vet. Sci., 15:221-225, 2012. https://doi.org/10.2478/v10181-011-0137-1
  35. Yarahmadi, P., Miandare, H.K., Fayaz, S. and Caipang, C.M.A.: Increased stocking density causes changes in expression of selected stress- and immune-related genes, humoral innate immune parameters and stress responses of rainbow trout (Oncorhynchus mykiss). Fish. Shellfish. Immunol., 48:43-53, 2016. https://doi.org/10.1016/j.fsi.2015.11.007
  36. Yeganeh, S., Teimouri, M. and Amirkolaie, A.K.: Dietary effects of Spirulina platensis on hematological and serum biochemical parameters of rainbow trout (Oncorhynchus mykiss). Res. Vet. Sci., 101:84-88, 2015. https://doi.org/10.1016/j.rvsc.2015.06.002