DOI QR코드

DOI QR Code

Antioxidant activity and polyphenol content of fermented Sparassis latifolia extracts

꽃송이버섯 발효물의 항산화 활성 및 폴리페놀 함량 변화

  • Yang, Seung-Hwa (Department of Chemical Engineering, Graduate School of Chosun University) ;
  • Lee, Yong-Jo (Industrial-Academic Cooperation Group, Kwangju Women's University) ;
  • Kim, Da-Song (Department of Chemical Engineering, Graduate School of Chosun University) ;
  • Shin, Hyun-Jae (Department of Chemical Engineering, Graduate School of Chosun University)
  • 양승화 (조선대학교 대학원 화학공학과) ;
  • 이용조 (광주여자대학교 산학협력단) ;
  • 김다송 (조선대학교 대학원 화학공학과) ;
  • 신현재 (조선대학교 대학원 화학공학과)
  • Received : 2019.12.17
  • Accepted : 2019.12.20
  • Published : 2019.12.31

Abstract

Sparassis latifolia is a useful medicinal mushroom that has recently gained popularity in Asia. It has a rich flavor and is a good source of nutrients contains a large number of polyphenols for a functional food or dietary supplement. In addition, S. latifolia is rich in beta-glucan and gamma-aminobutyric acid (GABA). These two compounds have been reported to show immune-stimulating and anticancer effects by numerous studies. In this study, four species of lactic acid bacteria (Lactobacillus plantarum subsp. plantarum, L. acidophilus, L. helveticus, and L. delbrueckii subsp. bulgaricus) were used to ferment the fruiting body of S. latifolia. Fermented S. latifolia extracts were found to have a higher polyphenol content and antioxidant activity following fermentation as well as increased protease activity.

본 논문에서는 꽃송이버섯을 4종의 유산균(Lactobacillus plantarum subsp. plantarum, L. acidophilus, L. helveticus, L. delbrueckii subsp. bulgaricus)을 사용해 발효를 하였다. 발효된 꽃송이버섯 발효물을 항산화 활성(DPPH free radical scavenging activity, ABTS radical scavenging activity, Hydroxy radical scavenging activity), SOD activity, 총 폴리페놀 함량(TPC), HPLC 분석, protease 활성을 동해 발효 전 후 생리활성 변화를 확인하였다. 꽃송이버섯 발효물의 항산화 활성은 IC50 28.09-64.46 ㎍/mL, SOD 활성은 IC50 15.75-39.42 ㎍/mL, TPC는 57.66-100.43 GAE ㎍/mL 와 85.25-110.68 ㎍/mL 로 확인되었다. 꽃송이버섯 추출물의 항산화 활성보다 약 8배 이상 증가된 결과로 확인되었다. 또한 꽃송이버섯 발효물의 HPLC 분석 결과는 ascorbic acid, gallic acid, chlorogenic acid의 함량이 높게 확인되었으며, protease 활성 또한 발효물의 활성이 높은 것으로 확인되었다. Lactobacillus 균주들의 작용에 의하여 꽃송이버섯이 발효되면서 폴리페놀류가 증가하여 생리활성이 꽃송이버섯 추출물에 비해 증가한 것으로 추측된다. Lactobacillus 균중에서 L. helveticus 균주로 발효된 꽃송이버섯 발효물은 가장 높은 활성을 나타냈으며, 꽃송이버섯을 발효하는데 있어 L. helveticus 균주가 가장 적합한 균주로 확인되었다.

Keywords

References

  1. An GH, Han JG, Cho JH. 2019. Antioxidant activities and $\beta$-glucan contents of wild mushrooms in Korea. J Mushrooms 17: 144-151.
  2. Cho JH, Lee JY, Lee MJ, Oh HN, Kang DH, Jhune CS. 2013. Comparative analysis of useful $\beta$-glucan and polyphenol in the fruiting bodies of Ganoderma spp. J Mushroom Sci Prod 11: 164-170. https://doi.org/10.14480/JM.2013.11.3.164
  3. Choi MH, Han HK, Lee YJ, Jo HG, Shin HJ. 2014. In vitro anticancer activity of hydrophobic fractions of Sparassis latifolia extract using AGS, A529, and HepG2 cell lines. J Mushrooms 12: 304-310. https://doi.org/10.14480/JM.2014.12.4.304
  4. Choi MH, Kim MJ, Jeon YJ, Shin HJ. 2014. Quality changes of fresh vegetable and fruit juice by various juicers. KSBB J 29: 145-154. https://doi.org/10.7841/ksbbj.2014.29.3.145
  5. Choi MH, Shin HJ. 2015. Anti-oxidative and antimelanogenesis effects of blueberry extract. Kor J Aesthet Cosmetol 13: 261-266.
  6. Choi SJ, Lee YS, Kim JK, Kim JK, Lim SS. 2010. Physiological activities of extract from edible mushrooms. J Korean Soc Food Sci Nutr 39: 1087-1096. https://doi.org/10.3746/jkfn.2010.39.8.1087
  7. Choi SY, Kim YC, Chang BS. 2011. Inhibitory efficacy of black tea water extract on melanogenesis in melan-a cells and its action mechanisms. Korean J Microscopy 41: 169-177.
  8. Ferreira ICFR, Barros L, Abreu RMV. 2009. Antioxidants in wild mushrooms. Curr Med Chem 16: 1543-1560. https://doi.org/10.2174/092986709787909587
  9. Harada T, Miura NN, Adachi Y, Nakajima M, Yadomae T, Ohno N. 2002. IFN-$\gamma$ induction by SCG, 1,3-$\beta$-D-glucan from Sparassis crispa, DBA/2 mice in vitro. J Interferon Cytokine Res 22: 1227-1239. https://doi.org/10.1089/10799900260475759
  10. Jeon, HJ, Kwon HJ. 2014. Antioxidant effects and functional evaluation of Gynura procumbens extract as a collaboration material for cosmetics and functional food. Kor J Aesthet Cosmetol 12: 499-507.
  11. Kim MY, Seguin P, Ahn JK, Kim JJ, Chun SC, Kim EH, Seo SH, Kang EY, Kim SL, Park YJ. 2008. Phenolic compound concentration and antioxidant activities of edible and medicinal mushrooms from Korea. J Agr Food Chem 56: 7265-7270. https://doi.org/10.1021/jf8008553
  12. Lee JJ, Son HY, Choi YM, Cho JH, Min JK, Oh HK. 2016. Physiochemical components and antioxidant activity of Sparassis crispa mixture fermented by lactic acid bacteria. Korean J Food Preserv 23: 361-368. https://doi.org/10.11002/kjfp.2016.23.3.361
  13. Lee SO, Lee HJ, Yu MH, Im HG, Lee IS. 2005. Total polyphenol contents and antioxidant activities of methanol extracts from vegetables produced in Ullung island. Korean J Food Sci Technol 37: 233-240.
  14. Moradali MF, Mostafavi H, Ghods S, Hedjaroude GA. 2007. Immunomodulating and anticancer agents in the realm of macromycetes fungi (macrofungi). Int Immunopharmacol 7: 701-724. https://doi.org/10.1016/j.intimp.2007.01.008
  15. Oh DS, Kim HS, Shim BS, Wui AJ, Yoon BS, Kim KW, Wang SJ. 2013. Effect of mycelial culture of cauliflower mushroom (Sparassis crispa) using LED lighting operation. J Mushrooms 11: 24-31. https://doi.org/10.14480/JM.2013.11.1.024
  16. Ohno N, Miura NN, Nakajima M, Yadomae T. 2000. Antitumor 1,3-$\beta$-glucan from cultured fruit body of Sparassis crispa. Biol Pharm Bull 23: 866-872. https://doi.org/10.1248/bpb.23.866
  17. Park EJ, Jhon DY. 2010. The antioxidant, angiotensin converting enzyme inhibition activity, and phenolic compounds of bamboo shoot extracts. LWT - Food Sci. Technol. 43: 655-659. https://doi.org/10.1016/j.lwt.2009.11.005
  18. Park KY. 2012. Increased health functionality of fermented foods. Food Indus Nutr 17: 1-8.
  19. Puttaraju NG, Venkateshaiah SU, Dharmesh SM, Urs SM, Somasundaram R. 2006. Antioxidant activity of indigenous edible mushrooms. J Agric Food Chem 54: 9764-9772. https://doi.org/10.1021/jf0615707
  20. Sanchez-Moreno C. 2002. Review: Methods used to evaluate the free radical scavenging activity in foods and biological systems. Food Sci Technol Int 8: 121-137. https://doi.org/10.1177/1082013202008003770
  21. Taso R, Raymond Y. 2003. Optimization of a new mobile phase to know the complex and real polyphenolic composition: towards a total phenolic index using highperformance liquid chromatography. J Chromatogr A 1018: 29-40. https://doi.org/10.1016/j.chroma.2003.08.034