DOI QR코드

DOI QR Code

SHARPENED FORMS OF ANALYTIC FUNCTIONS CONCERNED WITH HANKEL DETERMINANT

  • Received : 2019.06.12
  • Accepted : 2019.09.30
  • Published : 2019.12.30

Abstract

In this paper, we present a Schwarz lemma at the boundary for analytic functions at the unit disc, which generalizes classical Schwarz lemma for bounded analytic functions. For new inequalities, the results of Jack's lemma and Hankel determinant were used. We will get a sharp upper bound for Hankel determinant H2(1). Also, in a class of analytic functions on the unit disc, assuming the existence of angular limit on the boundary point, the estimations below of the modulus of angular derivative have been obtained.

References

  1. T. Akyel and B. N. Ornek, Some Remarks on Schwarz lemma at the boundary, Filomat 31 (13) (2017), 4139-4151. https://doi.org/10.2298/FIL1713139A
  2. T. A. Azeroglu and B. N. Ornek, A refined Schwarz inequality on the boundary, Complex Variables and Elliptic Equations 58 (2013), 571-577. https://doi.org/10.1080/17476933.2012.718338
  3. H. P. Boas, Julius and Julia: Mastering the Art of the Schwarz lemma, Amer. Math. Monthly 117 (2010), 770-785. https://doi.org/10.4169/000298910x521643
  4. V. N. Dubinin, The Schwarz inequality on the boundary for functions regular in the disc, J. Math. Sci. 122 (2004), 3623-3629. https://doi.org/10.1023/B:JOTH.0000035237.43977.39
  5. G. M. Golusin, Geometric Theory of Functions of Complex Variable [in Russian], 2nd edn., Moscow 1966.
  6. I. S. Jack, Functions starlike and convex of order ${\alpha}$, J. London Math. Soc. 3 (1971), 469-474. https://doi.org/10.1112/jlms/s2-3.3.469
  7. M. Mateljevic, Rigidity of holomorphic mappings & Schwarz and Jack lemma, DOI:10.13140/RG.2.2.34140.90249, In press.
  8. P. R. Mercer, Sharpened Versions of the Schwarz Lemma, Journal of Mathematical Analysis and Applications 205 (1997), 508-511. https://doi.org/10.1006/jmaa.1997.5217
  9. P. R. Mercer, Boundary Schwarz inequalities arising from Rogosinski's lemma, Journal of Classical Analysis 12 (2018), 93-97. https://doi.org/10.7153/jca-2018-12-08
  10. P. R. Mercer, An improved Schwarz Lemma at the boundary, Open Mathematics 16 (2018), 1140-1144. https://doi.org/10.1515/math-2018-0096
  11. R. Osserman, A sharp Schwarz inequality on the boundary, Proc. Amer. Math. Soc. 128 (2000) 3513-3517. https://doi.org/10.1090/S0002-9939-00-05463-0
  12. B. N. Ornek and T. Duzenli, Bound Estimates for the Derivative of Driving Point Impedance Functions, Filomat, 32(18) (2018), 6211-6218.. https://doi.org/10.2298/fil1818211o
  13. B. N. Ornek and T. Duzenli, Boundary Analysis for the Derivative of Driving Point Impedance Functions, IEEE Transactions on Circuits and Systems II: Express Briefs, 65 (9) (2018), 1149-1153. https://doi.org/10.1109/tcsii.2018.2809539
  14. B. N. Ornek, Sharpened forms of the Schwarz lemma on the boundary, Bull. Korean Math. Soc. 50 (6) (2013), 2053-2059. https://doi.org/10.4134/BKMS.2013.50.6.2053
  15. Ch. Pommerenke, Boundary Behaviour of Conformal Maps, Springer-Verlag, Berlin. 1992.
  16. M. Fekete and G. Szego, Eine Bemerkung Uber Ungerade Schlichte Funktionen, J. Lond. Math. Soc. 2 (1933), 85-89
  17. J. W. Noonan and D. K. Thomas, On the second Hankel determinant of areally mean p-valent functions, Trans. Amer. Math. Soc. 223 (1976), 337-346. https://doi.org/10.1090/S0002-9947-1976-0422607-9
  18. O. Ahuja, M. Kasthuri, G. Murugusundaramoorthy and K. Vijaya, Upper bounds of second Hankel determinant for universally prestarlike functions, J. Korean Math. Soc. 55 (5) (2018), 1019-1030.