DOI QR코드

DOI QR Code

Ophthalmic Application of Hydrogel Polymer Containing Carbon Nanomaterials

  • Seok, Jae-Wuk (Department of Optometry & Vision Science, Catholic University of Daegu) ;
  • Geum, Yong-Pil (Department of Innovative Start-Up & Growth, Catholic University of Daegu) ;
  • Shin, Dong-Seok (R&D Center, Youngwon Tech.) ;
  • Sung, A-Young (Department of Optometry & Vision Science, Catholic University of Daegu)
  • Received : 2019.10.21
  • Accepted : 2019.12.17
  • Published : 2019.12.30

Abstract

This experiment is to evaluate the physical properties of the hydrogel lens with the addition of carbon-based nanomaterials, Graphene oxide and Carbon nanotube, and to confirm the improvement of strength. Hyaluronic acid, a hydrophilic substance, was used as an additive by using HEMA (2-hydroxyethyl methacrylate) and ethylene glycol dimethacrylate (EGDMA) as a base monomers. Graphene oxide and two types of Carbon nanotubes(Amide functionalized and Carboxilic acid functionalized) were added 0.1%, 0.3%, 0.5%, respectively, and the physical properties were analyzed by measuring water content, refractive index, breaking strength and SEM image. In the case of the sample added with each carbon nano material, the water content tended to increase for all three materials. The breaking strength tended to increase in Graphene oxide and Carbon nanotube; Carboxilic acid functionalized, but in the case of Carbon nanotube; amide fuctionalized, the breaking strength tended to decrease. However, Carbon nanotube; amide fuctionalized had the highest breaking strength among the three nano materials. Thus, the addition of certain carbon nanomaterials seems to be appropriate for improving the strength of hydrogel lenses.

Keywords

References

  1. S.Iijima, Nature, 354, p.56-58, 1991. https://doi.org/10.1038/354056a0
  2. P. M. Ajayan, O. Stephan, C. Colliex and D. Trauth science 265, p.1212-1214, 1994.
  3. K. Awasthi, A. Srivastava, and O. N. Srivatava, J.Nanosci. 5, p.1616-1636, 2005.
  4. M. Montioux, Carbon, 40, p. 1809-1823, 2002. https://doi.org/10.1016/S0008-6223(02)00102-1
  5. H. Hou, Z. Jun, F. Weller, and A. Greiner Chem, Mater, 15, p.580-585, 2003. https://doi.org/10.1021/cm020970g
  6. Y. A. Kim, H. Muramatsu, T. Hayashi, M. Endo, M. Torrones, and M. S. Dresselhaus, Chem. Vap. Desposition, 12, p.327-330, 2006. https://doi.org/10.1002/cvde.200504217
  7. C. A. Cooper, R. J. Young, and M. Halsall, Composite, 32A, p.401-411, 2001.
  8. G. Gao, T. Cagin, W. A. Goddard III, Nanotechnology, 9, p.184-191, 1998. https://doi.org/10.1088/0957-4484/9/3/007
  9. T. Uchida, and S. Kumar, J. Appl. Polym. Sci. , 98, p.985-989, 2005. https://doi.org/10.1002/app.22203
  10. De Heer Walt, A, MRS Bull, 29, p.281-285, 2004. https://doi.org/10.1557/mrs2004.81
  11. K. S, Novoselov, A. K. Gein, S. V. Morozov, D. A. Jiang, Y. Zhang, S. V. Dubonos, et al, Firsov, Science, 306, p.666-669, 2004. https://doi.org/10.1126/science.1102896
  12. X. Li, X. Wang, L. Zhang, S. Lee, and H. Dai, Science, 319, p.1229-1232, 2008. https://doi.org/10.1126/science.1150878
  13. U. Kim, J. Kang, C. Lee, H.Y. Kwon, S. Hwang, H. Moon et al : Nanotechnology, 24, 145501, 2015. https://doi.org/10.1088/0957-4484/24/14/145501
  14. X. Wang, L. Zhi, and K. Mullan, Nanoletters, 8, p.323-327, 2008. https://doi.org/10.1021/nl072838r
  15. S. Sun, L. Gao, and Y. Liu, Applied Physics letters, 96, p.083-113, 2013.
  16. M. J. Lee and A.Y. Sung, Journal of Nanoscience and Nanotechnology, 18, p.6978-6982, 2018. https://doi.org/10.1166/jnn.2018.15487
  17. E. V. Castro, K.S. Novoselov, S. V. Mozorov, et al : Physical review letters, 99, 216802, 2007. https://doi.org/10.1103/PhysRevLett.99.216802