DOI QR코드

DOI QR Code

Sol-gel TiO2/Carbon Paste Electrode Nanocomposites for Electrochemical-assisted Sensing of Fipronil Pesticide

  • Maulidiyah, Maulidiyah (Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Halu Oleo) ;
  • Azis, Thamrin (Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Halu Oleo) ;
  • Lindayani, Lindayani (Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Halu Oleo) ;
  • Wibowo, Dwiprayogo (Department of Pharmacy, Faculty of Sciences and Technology, Institut Teknologi dan Kesehatan Avicenna) ;
  • Salim, La Ode Agus (Department of Pharmacy, Faculty of Sciences and Technology, Institut Teknologi dan Kesehatan Avicenna) ;
  • Aladin, Andi (Chemical Engineering, Faculty of Industrial Technology, Universitas Muslim Indonesia) ;
  • Nurdin, Muhammad (Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Halu Oleo)
  • Received : 2019.04.30
  • Accepted : 2019.06.24
  • Published : 2019.12.31

Abstract

The unique study of TiO2 sol-gel modified carbon paste electrode (CPE) nanocomposites have been developed for electrochemical sensor detecting fipronil pesticide compound. We develop the easy synthesized TiO2 via a sol-gel method and modified in CPE which applied electrochemical system as cyclic voltammetry (CV) because the concentration is proportional with current peaks. We discover the TiO2 optimal mass used of 0.1 g which is compared with 0.7 g carbon and 0.3 mL paraffin. It has high-current anodic (Ipa) of 1.13×103 μA and high-current cathodic (Ipc) -0.96×103 μA in scan rate of 0.5 V/s. The limit of detection (LOD) of fipronil has been determined of 34.0×10-5 μM in percent recovery of 0.8%. Its high-stability for lifetime TiO2-CPE nanocomposites was expressed for 13 days which mean that can be used for detecting fipronil pesticide.

Keywords

References

  1. D. Akyuz, T. Keles, Z. Biyiklioglu, and A. Koca, J. Electroanal.-Chem, 2017, 804, 53-63. https://doi.org/10.1016/j.jelechem.2017.09.044
  2. M. Nurdin, M. Maulidiyah, L. O. A. Salim, M. Z. Muzakkar, and A. A. Umar, Microchem. J, 2018, 145, 756-761.
  3. A.D. Goff, P. Saranjampour, L.M. Ryan, M.L. Hladik, J.A. Chovi, K.L. Armbust, S.M. Brander, Aquat. Toxicol, 2017, 186, 96-104. https://doi.org/10.1016/j.aquatox.2017.02.027
  4. R.-Y. Tang, P. Zhong, Q.-L. Lin, M.-L. Hu, and Q. Shi, Acta Crystallogr. Sect. E Struct. Reports Online, 2005, 61(12), 4374-4375. https://doi.org/10.1107/S1600536805039280
  5. Y. Zhang, X. Meng, Y. Yang, H. Li, X. Wang, B. Yang, J. Zhang, C. Li, N.S. Millar, Z. Liu., Sci. Rep, 2016, 6, 32335. https://doi.org/10.1038/srep32335
  6. D.R. Roshan, S.V.S. Raju, and K.N. Singh, J. Pure Appl. Microbiol, 2016, 10(4), 2773-2783. https://doi.org/10.22207/JPAM.10.4.36
  7. N. Kumar, R. Kumar, N.A. Shakil, D.J. Sarkar, and S. Chander, Int. J. Pest Manag, 2018, 1-8. https://doi.org/10.1080/09670870310001619282
  8. M. Shahbaaz, S. Kanchi, M. Sabela, and K. Bisetty, Pan Stanford, 2018, 287-311.
  9. Q. Tu, M.E. Hickey, T. Yang, S. Gao, Q. Zhang, Y. Qu, X. Du, J. Wang, L. He, Food Control, 2019, 96, 16-21, 2019. https://doi.org/10.1016/j.foodcont.2018.08.025
  10. X. Peng, Y. Li, H. Xia, L. Peng, and Y. Feng, J. Sep. Sci, 2016, 39(11), 2196-2203. https://doi.org/10.1002/jssc.201501250
  11. S. Biswas, R. Mondal, A. Mukherjee, M. Sarkar, and R. K. Kole, Food Chem, 2019, 272, 559-567. https://doi.org/10.1016/j.foodchem.2018.08.087
  12. X. Wu, Y. Yu, J. Xu, F. Dong, X. Liu, P. Du, D. Wei, and Y. Zheng, PLoS One, 2017, 12(3), 0173690.
  13. P. Zhou, Q. Huang, L. Ouyang, Z. Wang, P. Meng, M. Dai, Y. Wang, Chinese J. Chromatogr, 2018, 36(7), 629-633. https://doi.org/10.3724/SP.J.1123.2018.01049
  14. A.A. Ensafi, H. Bahrami, B. Rezaei, and H. Karimi-Maleh, Mater. Sci. Eng. C, 2013, 33(2), 831-835. https://doi.org/10.1016/j.msec.2012.11.008
  15. M. Nurdin, M. Z. Muzakkar, M. Maulidiyah, N. Maulidiyah, and D. Wibowo, J. Mater. Environ. Sci, 2016, 7(9), 3334-3343.
  16. A.W. Wahab, N. La Nafie, and M. Nurdin, Int. J. Sci. Technol. Res, 2013, 2(12), 220-224.
  17. M. Nurdin, T. Azis, M. Maulidiyah, A. Aladin, N.A. Hafid, L. O. A. Salim, and D. Wibowo, IOP Conference Series: Materials Science and Engineering, 2018, 367(1), 12048. https://doi.org/10.1088/1757-899X/367/1/012048
  18. J.B. Raoof, R. Ojani, and M. Baghayeri, Chinese J. Catal., 2011, 32(11-12), 1685-1692. https://doi.org/10.1016/S1872-2067(10)60268-9
  19. M. Shehata, S. M. Azab, A.M. Fekry, and M.A. Ameer, Biosens. Bioelectron., 2016, 79, 589-592. https://doi.org/10.1016/j.bios.2015.12.090
  20. C. Li, C. Wang, C. Wang, and S. Hu, Sensors Actuators B Chem, 2006, 117(1), 166-171. https://doi.org/10.1016/j.snb.2005.11.019
  21. F. Zhang, X. Yang, H. Wang, M. Cheng, J. Zhao, and L. Sun, ACS Appl. Mater. Interfaces, 2014, 6(18), 16140-16146. https://doi.org/10.1021/am504175x
  22. J.-B. Raoof, R. Ojani, and M. Baghayeri, Sensors Actuators B Chem, 2009, 143(1), 261-269. https://doi.org/10.1016/j.snb.2009.08.046
  23. A.A. Firooz, B. H. Nia, J. Beheshtian, and M. Ghalkhani, J. Electron. Mater, 2017, 46(10), 5657-5663. https://doi.org/10.1007/s11664-017-5625-3
  24. E. Zarei, M. R. Jamali, and J. Bagheri, Iran. J. Catal., 2018.
  25. H. Ritonga, C. E. Faiqoh, D. Wibowo, and M. Nurdin, Biosci. Biotechnol. Res. Asia, 2015, 12(3), 1189-1985.
  26. M. Nurdin, A. Zaeni, E.T. Rammang, M. Maulidiyah, and D. Wibowo, Anal. Bioanal. Electrochem, 2017, 9(4), 480-494.
  27. D. Wibowo, R. Salamba, and M. Nurdin, Orient. J. Chem, 2015, 31(4), 2337-2342. https://doi.org/10.13005/ojc/310462
  28. Nurhidayani, M. Z. Muzakkar, Maulidiyah, D. Wibowo, and M. Nurdin, IOP Conf. Ser. Mater. Sci. Eng, 2017, 267(1), 012035. https://doi.org/10.1088/1757-899X/267/1/012035
  29. D. Wibowo, Maulidiyah, Ruslan, T. Azis, and M. Nurdin, Anal. Bioanal. Electrochem, 2018, 10(4).
  30. L.O. Mursalim, Ruslan, R.A. Safitri, T. Azis, Maulidiyah, D. Wibowo, M. Nurdin, IOP Conference Series: Materials Science and Engineering, 2017, 267(1), 012006. https://doi.org/10.1088/1757-899X/267/1/012006
  31. Maulidiyah, T. Azis, A. T. Nurwahidah, D. Wibowo, and M. Nurdin, Environ. Nanotechnology, Monit. Manag., 2017, 8, 103-111. https://doi.org/10.1016/j.enmm.2017.06.002
  32. Maulidiyah, M. Nurdin, D. Wibowo, and A. Sani, Int. J. Pharm. Pharm. Sci., 2015, 7(6), 141-146.
  33. H. Lin, X. Ji, Q. Chen, Y. Zhou, C. E. Banks, and K. Wu, Electrochem. commun., 2009, 11(10), 1990-1995. https://doi.org/10.1016/j.elecom.2009.08.034
  34. M. Mazloum-ardakani, H. Rajabi, H. Beitollahi, B. Bi, and F. Mirjalili, Int. J. Electrochem. Sci, 2010, 5, 147-157.
  35. B. Hou, X. Cui, and Y. Chen, Solid State Ionics, 2018, 325, 148-156. https://doi.org/10.1016/j.ssi.2018.08.006
  36. J. Yin, X. Chen, and Z. Chen, Microchem. J., 2019, 145, 295-300. https://doi.org/10.1016/j.microc.2018.09.030
  37. M. Nurdin, M. Nurdin, N.A. Yanti, Suciani, A.H. Watoni, Maulidiyah, A. Aladin, and D. Wibowo, Asian J. Chem., 2018, 30(6), 1387-1392. https://doi.org/10.14233/ajchem.2018.21270
  38. L.V. Taveira, J.M. Macak, H. Tsuchiya, L.F. P.Dick, and P. Schmuki, J. Electrochem. Soc., 2005, 152(10), B405-B410. https://doi.org/10.1149/1.2008980
  39. R.S. Nicholson, Anal. Chem., 1965, 37(11), 1351-1355. https://doi.org/10.1021/ac60230a016
  40. G.E. Thompson, Thin Solid Films, 1997, 297(1-2), 192-201. https://doi.org/10.1016/S0040-6090(96)09440-0
  41. C.I. Torres, A. Kato Marcus, and B.E. Rittmann, Biotechnol. Bioeng., 2008, 100(5), 872-881. https://doi.org/10.1002/bit.21821

Cited by

  1. The effect of calcogenate sulfur on the performance of the S-TiO2/Ti electrode as a photoelectrocatalytic sensor for phenolic compounds vol.1763, pp.1, 2021, https://doi.org/10.1088/1742-6596/1763/1/012069
  2. Examination of Carbon Paste Electrode/TiO2 Nanocomposite as Electrochemical Sensor for Detecting Profenofos Pesticide vol.57, pp.3, 2019, https://doi.org/10.3103/s1068375521030029
  3. Synthesis and charcterization of Cu-doped TiO2 (Cu/TiO2) nanoparticle as antifungal phytophthora palmivora vol.1899, pp.1, 2019, https://doi.org/10.1088/1742-6596/1899/1/012039
  4. Photoelectrocatalytic performance of ilmenite(FeTiO3) doped TiO2/Ti electrode for reactive green 19 degradation in the UV-visible region vol.1899, pp.1, 2021, https://doi.org/10.1088/1742-6596/1899/1/012041
  5. Cu-TiO2 doped Ti thin-layer photoelectrode for visible-light induced photoelectrocatalytic activities: degradation of methylene orange vol.1899, pp.1, 2019, https://doi.org/10.1088/1742-6596/1899/1/012042
  6. Decomposition of lignin compounds from oil palm empty fruit bunch using ilmenite vol.1899, pp.1, 2019, https://doi.org/10.1088/1742-6596/1899/1/012044
  7. Effect of hexamethylenetetramine surfactant in morphology and optical properties of TiO2 nanoparticle for dye-sensitized solar cells vol.1899, pp.1, 2019, https://doi.org/10.1088/1742-6596/1899/1/012045
  8. High photoelectrocatalytic activity of selenium (Se) doped TiO2/Ti electrode for degradation of reactive orange 84 vol.1899, pp.1, 2019, https://doi.org/10.1088/1742-6596/1899/1/012046
  9. Optimising Adsorptive Stripping Voltammetry: Strategies and Limitations vol.8, pp.12, 2019, https://doi.org/10.1002/celc.202100679
  10. Towards Clean and Safe Water: A Review on the Emerging Role of Imprinted Polymer-Based Electrochemical Sensors vol.21, pp.13, 2019, https://doi.org/10.3390/s21134300
  11. Fluorescence assay for the sensitive detection of fipronil based on an “on-off” oxidized SWCNH/aptamer sensor vol.13, pp.29, 2019, https://doi.org/10.1039/d1ay00769f
  12. Effects of Ni-TiO2 Pillared Clay-Montmorillonite Composites for Photocatalytic Enhancement Against Reactive Orange Under Visible Light vol.31, pp.8, 2021, https://doi.org/10.1007/s10904-021-01980-9
  13. A novel electrochemical sensor for the detection of fipronil and its toxic metabolite fipronil sulfone using TiO2-polytriazine imide submicrostructured composite as an efficient electrocatalyst vol.238, pp.p2, 2019, https://doi.org/10.1016/j.talanta.2021.123025